Python缓存技术实现过程详解

所属分类: 脚本专栏 / python 阅读数: 1151
收藏 0 赞 0 分享

一段非常简单代码

普通调用方式

def console1(a, b):
  print("进入函数")
  return (a, b)

print(console1(3, 'a'))
print(console1(2, 'b'))
print(console1(3.0, 'a'))

很简单的一段代码,传入两个参数。然后打印输出。输出结果

进入函数
(3, 'a')
进入函数
(2, 'b')
进入函数
(3.0, 'a')

使用某个装饰器后

接下来我们引入functools模块的lru_cache,python3自带模块。

from functools import lru_cache
@lru_cache()
def console2(a, b):
  print("进入函数")
  return (a, b)
print(console2(3, 'a'))
print(console2(2, 'b'))
print(console2(3.0, 'a'))

ほら、惊喜来了。

进入函数
(3, 'a')
进入函数
(2, 'b')
(3, 'a')

我们发现,少了一次进入函数的打印,这是怎么回事呢?这就是接下来要说的LRU缓存技术了。

我们理解下什么是LRU

LRU (Least Recently Used) 是缓存置换策略中的一种常用的算法。当缓存队列已满时,新的元素加入队列时,需要从现有队列中移除一个元素,LRU 策略就是将最近最少被访问的元素移除,从而腾出空间给新的元素。

python中的实现

python3中的functools模块的lru_cache实现了这个功能,lru_cache装饰器会记录以往函数运行的结果,实现了备忘(memoization)功能,避免参数重复时反复调用,达到提高性能的作用,在递归函数中作用特别明显。这是一项优化技术,它把耗时的函数的结果保存起来,避免传入相同的参数时重复计算。

带参数的lru_cache

使用方法lru_cache(maxsize=128, typed=False)maxsize可以缓存最多个此函数的调用结果,从而提高程序执行的效率,特别适合于耗时的函数。参数maxsize为最多缓存的次数,如果为None,则无限制,设置为2的n次幂时,性能最佳;如果 typed=True,则不同参数类型的调用将分别缓存,例如 f(3) 和 f(3.0),默认False来一段综合代码:

from functools import lru_cache

def console1(a, b):
  print("进入函数")
  return (a, b)


@lru_cache()
def console2(a, b):
  print("进入函数")
  return (a, b)


@lru_cache(maxsize=256, typed=True)
def console3(a, b):
  '''

  :param a:
  :param b:
  :return:
  '''
  print("进入函数")
  return (a, b)


print(console1(3, 'a'))
print(console1(2, 'b'))
print(console1(3.0, 'a'))
print("*" * 40)
print(console2(3, 'a'))
print(console2(2, 'b'))
print(console2(3.0, 'a'))
print("*" * 40)
print(console3(3, 'a'))
print(console3(2, 'b'))
print(console3(3.0, 'a'))

同样的可以用到爬虫的去重操作上,避免网页的重复请求。在后期存储的时候做判断即可。

from functools import lru_cache
from requests_html import HTMLSession
session=HTMLSession()
@lru_cache()
def get_html(url):
  req=session.get(url)
  print(url)
  return req

urllist=["https://www.baidu.com","https://pypi.org/project/pylru/1.0.9/","https://www.baidu.com"]

if __name__ == '__main__':
  for i in urllist:
    print(get_html(i))

输出

https://www.baidu.com
<Response [200]>
https://pypi.org/project/pylru/1.0.9/
<Response [200]>
<Response [200]>

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

更多精彩内容其他人还在看

深入浅析python3中的unicode和bytes问题

在python3中,有两种字符串类型,默认的就是str,即unicode,也叫做文本类型。这篇文章主要介绍了python3中的unicode和bytes问题,需要的朋友可以参考下
收藏 0 赞 0 分享

python3 自动识别usb连接状态,即对usb重连的判断方法

今天小编就为大家分享一篇python3 自动识别usb连接状态,即对usb重连的判断方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

python二进制文件的转译详解

这篇文章主要介绍了python二进制文件的转译详解的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
收藏 0 赞 0 分享

python字符串中匹配数字的正则表达式

正则表达式是一个特殊的字符序列,它能帮助你方便的检查一个字符串是否与某种模式匹配。这篇文章主要介绍了python字符串中匹配数字的正则表达式 ,需要的朋友可以参考下
收藏 0 赞 0 分享

在Python中COM口的调用方法

今天小编就为大家分享一篇在Python中COM口的调用方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python read函数按字节(字符)读取文件的实现

这篇文章主要介绍了Python read函数按字节(字符)读取文件的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
收藏 0 赞 0 分享

python读取图片的方式,以及将图片以三维数组的形式输出方法

今天小编就为大家分享一篇python读取图片的方式,以及将图片以三维数组的形式输出方法,具有好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

在python中利用numpy求解多项式以及多项式拟合的方法

今天小编就为大家分享一篇在python中利用numpy求解多项式以及多项式拟合的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python正则表达式匹配数字和小数的方法

这篇文章主要介绍了Python正则匹配数字和小数的方法,本文通过示例代码给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
收藏 0 赞 0 分享

python读写配置文件操作示例

这篇文章主要介绍了python读写配置文件操作,结合实例形式分析了Python针对ini配置文件的读取、解析、写入等相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享
查看更多