详解用Python为直方图绘制拟合曲线的两种方法

所属分类: 脚本专栏 / python 阅读数: 1893
收藏 0 赞 0 分享

直方图是用于展示数据的分组分布状态的一种图形,用矩形的宽度和高度表示频数分布,通过直方图,用户可以很直观的看出数据分布的形状、中心位置以及数据的离散程度等。

在python中一般采用matplotlib库的hist来绘制直方图,至于如何给直方图添加拟合曲线(密度函数曲线),一般来说有以下两种方法。

方法一:采用matplotlib中的mlab模块

mlab模块是Python中强大的3D作图工具,立体感效果极佳。在这里使用mlab可以跳出直方图二维平面图形的限制,在此基础上再添加一条曲线。在这里,我们以鸢尾花iris中的数据为例,来举例说明。

import numpy as np
import matplotlib.mlab as mlab
import matplotlib.pyplot as plt
import pandas
# Load dataset
url =
"https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"
names = ['sepal-length', 'sepal-width','petal-length', 'petal-width', 'class']
dataset = pandas.read_csv(url, names=names)
print(dataset.head(10))
# descriptions
print(dataset.describe())
x = dataset.iloc[:,0] #提取第一列的sepal-length变量
mu =np.mean(x) #计算均值
sigma =np.std(x)
mu,sigma

以上为通过python导入鸢尾花iris数据,然后提取第一列的sepal-length变量为研究对象,计算出其均值、标准差,接下来就绘制带拟合曲线的直方图。

num_bins = 30 #直方图柱子的数量

n, bins, patches = plt.hist(x, num_bins,normed=1, facecolor='blue', alpha=0.5)
#直方图函数,x为x轴的值,normed=1表示为概率密度,即和为一,绿色方块,色深参数0.5.返回n个概率,直方块左边线的x值,及各个方块对象
y = mlab.normpdf(bins, mu, sigma)#拟合一条最佳正态分布曲线y 
plt.plot(bins, y, 'r--') #绘制y的曲线
plt.xlabel('sepal-length') #绘制x轴
plt.ylabel('Probability') #绘制y轴
plt.title(r'Histogram : $\mu=5.8433$,$\sigma=0.8253$')#中文标题 u'xxx' 

plt.subplots_adjust(left=0.15)#左边距 
plt.show() 


以上命令主要采用mlab.normpdf基于直方图的柱子数量、均值、方差来拟合曲线,然后再用plot画出来,这种方法的一个缺点就是画出的正态分布拟合曲线(红色虚线)并不一定能很好反映数据的分布情况,如上图所示。

方法二:采用seaborn库中的distplot绘制

Seaborn其实是在matplotlib的基础上进行了更高级的API封装,从而使得作图更加容易,在大多数情况下使用seaborn就能做出很具有吸引力的图,而使用matplotlib就能制作具有更多特色的图。应该把Seaborn视为matplotlib的补充,而不是替代物。

import seaborn as sns 
sns.set_palette("hls") #设置所有图的颜色,使用hls色彩空间
sns.distplot(x,color="r",bins=30,kde=True)
plt.show()


在这里主要使用sns.distplot(增强版dist),柱子数量bins也设置为30,kde=True表示是否显示拟合曲线,如果为False则只出现直方图。

在这里注意一下它与前边mlab.normpdf方法不同的是,拟合曲线不是正态的,而是更好地拟合了数据的分布情况,如上图,因此比mlab.normpdf更为准确。

进一步设置sns.distplot,可以采用kde_kws(拟合曲线的设置)、hist_kws(直方柱子的设置),可以得到:

import seaborn as sns 
import matplotlib as mpl 
sns.set_palette("hls") 
mpl.rc("figure", figsize=(6,4)) 
sns.distplot(x,bins=30,kde_kws={"color":"seagreen", "lw":3 }, hist_kws={ "color": "b" }) 
plt.show()


其中,lw为曲线粗细程度。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

更多精彩内容其他人还在看

Python实现按学生年龄排序的实际问题详解

这篇文章主要给大家介绍了关于Python实现按学生年龄排序实际问题的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面跟着小编来一起学习学习吧。
收藏 0 赞 0 分享

Python开发的HTTP库requests详解

Requests是用Python语言编写,基于urllib,采用Apache2 Licensed开源协议的HTTP库。它比urllib更加方便,可以节约我们大量的工作,完全满足HTTP测试需求。Requests的哲学是以PEP 20 的习语为中心开发的,所以它比urllib更加P
收藏 0 赞 0 分享

Python网络爬虫与信息提取(实例讲解)

下面小编就为大家带来一篇Python网络爬虫与信息提取(实例讲解)。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

在python3环境下的Django中使用MySQL数据库的实例

下面小编就为大家带来一篇在python3环境下的Django中使用MySQL数据库的实例。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python 3.x读写csv文件中数字的方法示例

在我们日常开发中经常需要对csv文件进行读写,下面这篇文章主要给大家介绍了关于Python 3.x读写csv文件中数字的相关资料,文中通过示例代码介绍的非常详细,对大家具有一定的参考学习价值,需要的朋友们下面跟着小编来一起学习学习吧。
收藏 0 赞 0 分享

Python实现解析Bit Torrent种子文件内容的方法

这篇文章主要介绍了Python实现解析Bit Torrent种子文件内容的方法,结合实例形式分析了Python针对Torrent文件的读取与解析相关操作技巧与注意事项,需要的朋友可以参考下
收藏 0 赞 0 分享

Python实现文件内容批量追加的方法示例

这篇文章主要介绍了Python实现文件内容批量追加的方法,结合实例形式分析了Python文件的读写相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

Python简单实现自动删除目录下空文件夹的方法

这篇文章主要介绍了Python简单实现自动删除目录下空文件夹的方法,涉及Python针对文件与目录的读取、判断、删除等相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

简单学习Python多进程Multiprocessing

这篇文章主要和大家一起简单的学习Python多进程Multiprocessing ,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
收藏 0 赞 0 分享

Python导入模块时遇到的错误分析

这篇文章主要给大家详细解释了在Python处理导入模块的时候出现错误以及具体的情况分析,非常的详尽,有需要的小伙伴可以参考下
收藏 0 赞 0 分享
查看更多