pytorch中的embedding词向量的使用方法

所属分类: 脚本专栏 / python 阅读数: 978
收藏 0 赞 0 分享

Embedding

词嵌入在 pytorch 中非常简单,只需要调用 torch.nn.Embedding(m, n) 就可以了,m 表示单词的总数目,n 表示词嵌入的维度,其实词嵌入就相当于是一个大矩阵,矩阵的每一行表示一个单词。

emdedding初始化

默认是随机初始化的

import torch
from torch import nn
from torch.autograd import Variable
# 定义词嵌入
embeds = nn.Embedding(2, 5) # 2 个单词,维度 5
# 得到词嵌入矩阵,开始是随机初始化的
torch.manual_seed(1)
embeds.weight
# 输出结果:
Parameter containing:
-0.8923 -0.0583 -0.1955 -0.9656 0.4224
 0.2673 -0.4212 -0.5107 -1.5727 -0.1232
[torch.FloatTensor of size 2x5]

如果从使用已经训练好的词向量,则采用

pretrained_weight = np.array(args.pretrained_weight) # 已有词向量的numpy
self.embed.weight.data.copy_(torch.from_numpy(pretrained_weight))

embed的读取

读取一个向量。

注意参数只能是LongTensor型的

# 访问第 50 个词的词向量
embeds = nn.Embedding(100, 10)
embeds(Variable(torch.LongTensor([50])))
# 输出:
Variable containing:
 0.6353 1.0526 1.2452 -1.8745 -0.1069 0.1979 0.4298 -0.3652 -0.7078 0.2642
[torch.FloatTensor of size 1x10]

读取多个向量。

输入为两个维度(batch的大小,每个batch的单词个数),输出则在两个维度上加上词向量的大小。

Input: LongTensor (N, W), N = mini-batch, W = number of indices to extract per mini-batch
Output: (N, W, embedding_dim)

见代码

# an Embedding module containing 10 tensors of size 3
embedding = nn.Embedding(10, 3)
# 每批取两组,每组四个单词
input = Variable(torch.LongTensor([[1,2,4,5],[4,3,2,9]]))
a = embedding(input) # 输出2*4*3
a[0],a[1]

输出为:

(Variable containing:
 -1.2603 0.4337 0.4181
 0.4458 -0.1987 0.4971
 -0.5783 1.3640 0.7588
 0.4956 -0.2379 -0.7678
 [torch.FloatTensor of size 4x3], Variable containing:
 -0.5783 1.3640 0.7588
 -0.5313 -0.3886 -0.6110
 0.4458 -0.1987 0.4971
 -1.3768 1.7323 0.4816
 [torch.FloatTensor of size 4x3])

以上这篇pytorch中的embedding词向量的使用方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

更多精彩内容其他人还在看

Python实现按学生年龄排序的实际问题详解

这篇文章主要给大家介绍了关于Python实现按学生年龄排序实际问题的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面跟着小编来一起学习学习吧。
收藏 0 赞 0 分享

Python开发的HTTP库requests详解

Requests是用Python语言编写,基于urllib,采用Apache2 Licensed开源协议的HTTP库。它比urllib更加方便,可以节约我们大量的工作,完全满足HTTP测试需求。Requests的哲学是以PEP 20 的习语为中心开发的,所以它比urllib更加P
收藏 0 赞 0 分享

Python网络爬虫与信息提取(实例讲解)

下面小编就为大家带来一篇Python网络爬虫与信息提取(实例讲解)。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

在python3环境下的Django中使用MySQL数据库的实例

下面小编就为大家带来一篇在python3环境下的Django中使用MySQL数据库的实例。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python 3.x读写csv文件中数字的方法示例

在我们日常开发中经常需要对csv文件进行读写,下面这篇文章主要给大家介绍了关于Python 3.x读写csv文件中数字的相关资料,文中通过示例代码介绍的非常详细,对大家具有一定的参考学习价值,需要的朋友们下面跟着小编来一起学习学习吧。
收藏 0 赞 0 分享

Python实现解析Bit Torrent种子文件内容的方法

这篇文章主要介绍了Python实现解析Bit Torrent种子文件内容的方法,结合实例形式分析了Python针对Torrent文件的读取与解析相关操作技巧与注意事项,需要的朋友可以参考下
收藏 0 赞 0 分享

Python实现文件内容批量追加的方法示例

这篇文章主要介绍了Python实现文件内容批量追加的方法,结合实例形式分析了Python文件的读写相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

Python简单实现自动删除目录下空文件夹的方法

这篇文章主要介绍了Python简单实现自动删除目录下空文件夹的方法,涉及Python针对文件与目录的读取、判断、删除等相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

简单学习Python多进程Multiprocessing

这篇文章主要和大家一起简单的学习Python多进程Multiprocessing ,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
收藏 0 赞 0 分享

Python导入模块时遇到的错误分析

这篇文章主要给大家详细解释了在Python处理导入模块的时候出现错误以及具体的情况分析,非常的详尽,有需要的小伙伴可以参考下
收藏 0 赞 0 分享
查看更多