对python 树状嵌套结构的实现思路详解

所属分类: 脚本专栏 / python 阅读数: 234
收藏 0 赞 0 分享

原始数据

原始数据大致是这样子的:

每条数据中的四个数据分别是 当前节点名称,节点描述(指代一些需要的节点属性),源节点(即最顶层节点),父节点(当前节点上一层节点)。

datas = [
 ["root", "根节点", "root", None],
 ["node1", "一级节点1", "root", "root"],
 ["node2", "一级节点2", "root", "root"],
 ["node11", "二级节点11", "root", "node1"],
 ["node12", "二级节点12", "root", "node1"],
 ["node21", "二级节点21", "root", "node2"],
 ["node22", "二级节点22", "root", "node2"],
]

节点类

抽象封装出一个节点类:

class Node(object):
 def __init__(self, name: str, desc, parent: str, children: list):
 """
 初始化
 :param name:
 :param desc:
 :param parent:
 :param children:
 """
 self.name = name
 self.desc = desc
 self.parent = parent
 self.children = children

 def get_nodes(self):
 """
 获取该节点下的全部结构字典
 """
 d = dict()
 d['name'] = self.name
 d['desc'] = self.desc
 d['parent'] = self.parent
 children = self.get_children()
 if children:
  d['children'] = [child.get_nodes() for child in children]
 return d

 def get_children(self):
 """
 获取该节点下的全部节点对象
 """
 return [n for n in nodes if n.parent == self.name]

 def __repr__(self):
 return self.name

将原始数据转换为节点对象

nodes = list()
for data in datas:
 node = Node(data[0], data[1], data[-1], [])
 nodes.append(node)

为各个节点建立联系

for node in nodes:
 children_names = [data[0] for data in datas if data[-1] == node.name]
 children = [node for node in nodes if node.name in children_names]
 node.children.extend(children)

测试

root = nodes[0]
print(root)

tree = root.get_nodes()
print(json.dumps(tree, indent=4))

运行结果:

原始数据也可以是字典的形式:

### fork_tool.py
import json


class Node(object):
 def __init__(self, **kwargs):
 """
 初始化
 :param nodes: 树的全部节点对象
 :param kwargs: 当前节点参数
 """

 self.forked_id = kwargs.get("forked_id")
 self.max_drawdown = kwargs.get("max_drawdown")
 self.annualized_returns = kwargs.get("annualized_returns")
 self.create_time = kwargs.get("create_time")
 self.desc = kwargs.get("desc")
 self.origin = kwargs.get("origin")
 self.parent = kwargs.get("parent")
 self.children = kwargs.get("children", [])

 def get_nodes(self, nodes):
 """
 获取该节点下的全部结构字典,即建立树状联系
 """
 d = dict()
 d['forked_id'] = self.forked_id
 d['max_drawdown'] = self.max_drawdown
 d['annualized_returns'] = self.annualized_returns
 d['create_time'] = self.create_time
 d['desc'] = self.desc
 d['origin'] = self.origin
 d['parent'] = self.parent
 children = self.get_children(nodes)
 if children:
  d['children'] = [child.get_nodes(nodes) for child in children]
 return d

 def get_children(self, nodes):
 """
 获取该节点下的全部节点对象
 """
 return [n for n in nodes if n.parent == self.forked_id]

 # def __repr__(self):
 # return str(self.desc)


def process_datas(datas):
 """
 处理原始数据
 :param datas:
 :return:
 """
 # forked_infos.append({"forked_id": str(forked_strategy.get("_id")),
 # "max_drawdown": max_drawdown,
 # "annualized_returns": annualized_returns,
 # "create_time": create_time, # 分支创建时间
 # "desc": desc,
 # "origin": origin,
 # "parent": parent,
 # "children": [],
 # })

 nodes = []
 # 构建节点列表集
 for data in datas:
 node = Node(**data)
 nodes.append(node)

 # 为各个节点对象建立类 nosql 结构的联系
 for node in nodes:
 children_ids = [data["forked_id"] for data in datas if data["parent"] == node.forked_id]
 children = [node for node in nodes if node.forked_id in children_ids]
 node.children.extend(children)

 return nodes


test_datas = [
 {'annualized_returns': 0.01,
 'children': [],
 'create_time': 1562038393,
 'desc': 'root',
 'forked_id': '5d1ad079e86117f3883f361e',
 'max_drawdown': 0.01,
 'origin': None,
 'parent': None},

 {'annualized_returns': 0.314,
 'children': [],
 'create_time': 1562060612,
 'desc': 'level1',
 'forked_id': '5d1b2744b264566d3f3f3632',
 'max_drawdown': 0.2,
 'origin': '5d1ad079e86117f3883f361e',
 'parent': '5d1ad079e86117f3883f361e'},

 {'annualized_returns': 0.12,
 'children': [],
 'create_time': 1562060613,
 'desc': 'level11',
 'forked_id': '5d1b2745e86117f3883f3632',
 'max_drawdown': None,
 'origin': '5d1ad079e86117f3883f361e',
 'parent': '5d1b2744b264566d3f3f3632'},

 {'annualized_returns': 0.09,
 'children': [],
 'create_time': 1562060614,
 'desc': 'level12',
 'forked_id': '5d1b2746b264566d3f3f3633',
 'max_drawdown': None,
 'origin': '5d1ad079e86117f3883f361e',
 'parent': '5d1b2744b264566d3f3f3632'},

 {'annualized_returns': None,
 'children': [],
 'create_time': 1562060614,
 'desc': 'level2',
 'forked_id': '5d1b2746e86117f3883f3633',
 'max_drawdown': None,
 'origin': '5d1ad079e86117f3883f361e',
 'parent': '5d1ad079e86117f3883f361e'},

 {'annualized_returns': None,
 'children': [],
 'create_time': 1562060627,
 'desc': 'level21',
 'forked_id': '5d1b2753b264566d3f3f3635',
 'max_drawdown': None,
 'origin': '5d1ad079e86117f3883f361e',
 'parent': '5d1b2746e86117f3883f3633'},

 {'annualized_returns': None,
 'children': [],
 'create_time': 1562060628,
 'desc': 'level211',
 'forked_id': '5d1b2754b264566d3f3f3637',
 'max_drawdown': None,
 'origin': '5d1ad079e86117f3883f361e',
 'parent': '5d1b2753b264566d3f3f3635'},

 {'annualized_returns': None,
 'children': [],
 'create_time': 1562060640,
 'desc': 'level212',
 'forked_id': '5d1b2760e86117f3883f3634',
 'max_drawdown': None,
 'origin': '5d1ad079e86117f3883f361e',
 'parent': '5d1b2753b264566d3f3f3635'},
]


if __name__ == "__main__":
 nodes = process_datas(test_datas)
 info = nodes[0].get_nodes(nodes)
 print(json.dumps(info, indent=4))

以上这篇对python 树状嵌套结构的实现思路详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

更多精彩内容其他人还在看

Python中模块string.py详解

这篇文章主要介绍了Python中模块之string.py的相关资料,文中介绍的非常详细,对大家具有一定的参考价值,需要的朋友们下面来一起看看吧。
收藏 0 赞 0 分享

Python中关键字nonlocal和global的声明与解析

这篇文章主要给大家介绍了关于Python中关键字nonlocal和global的声明与解析的相关资料,文中介绍的非常详细,相信对大家具有一定的参考价值,需要的朋友们下面来一起看看吧。
收藏 0 赞 0 分享

python中pandas.DataFrame对行与列求和及添加新行与列示例

pandas是python环境下最有名的数据统计包,而DataFrame翻译为数据框,是一种数据组织方式,这篇文章主要给大家介绍了python中pandas.DataFrame对行与列求和及添加新行与列的方法,文中给出了详细的示例代码,需要的朋友可以参考借鉴,下面来一起看看吧。
收藏 0 赞 0 分享

Python中str.format()详解

本文主要给大家详细介绍的是python编程中str.format()的基本语法和高级用法,非常的详细,并附有示例,希望大家能够喜欢
收藏 0 赞 0 分享

python中pandas.DataFrame的简单操作方法(创建、索引、增添与删除)

这篇文章主要介绍了python中pandas.DataFrame的简单操作方法,其中包括创建、索引、增添与删除等的相关资料,文中介绍的非常详细,需要的朋友可以参考借鉴,下面来一起看看吧。
收藏 0 赞 0 分享

Python IDLE 错误:IDLE''s subprocess didn''t make connection 的解决方案

这篇文章主要介绍了Python IDLE 错误:IDLE's subprocess didn't make connection 的解决方案的相关资料,需要的朋友可以参考下
收藏 0 赞 0 分享

Python中类型检查的详细介绍

Python是一种非常动态的语言,函数定义中完全没有类型约束。下面这篇文章主要给大家详细介绍了Python中类型检查的相关资料,需要的朋友可以参考借鉴,下面来一起看看吧。
收藏 0 赞 0 分享

利用python程序生成word和PDF文档的方法

这篇文章主要给大家介绍了利用python程序生成word和PDF文档的方法,文中给出了详细的介绍和示例代码,相信对大家具有一定的参考价值,有需要的朋友们下面来一起看看吧。
收藏 0 赞 0 分享

python用装饰器自动注册Tornado路由详解

这篇文章主要给大家介绍了python用装饰器自动注册Tornado路由,文中给出了三个版本的解决方法,有需要的朋友可以参考借鉴,下面来一起看看吧。
收藏 0 赞 0 分享

让python 3支持mysqldb的解决方法

这篇文章主要介绍了关于让python 3支持mysqldb的解决方法,文中给出解决的示例代码,相信对大家具有一定的参考价值,有需要的朋友可以一起来看看。
收藏 0 赞 0 分享
查看更多