python数据归一化及三种方法详解

所属分类: 脚本专栏 / python 阅读数: 1253
收藏 0 赞 0 分享

数据标准化(归一化)处理是数据挖掘的一项基础工作,不同评价指标往往具有不同的量纲和量纲单位,这样的情况会影响到数据分析的结果,为了消除指标之间的量纲影响,需要进行数据标准化处理,以解决数据指标之间的可比性。原始数据经过数据标准化处理后,各指标处于同一数量级,适合进行综合对比评价。以下是三种常用的归一化方法:

min-max标准化(Min-Max Normalization)

也称为离差标准化,是对原始数据的线性变换,使结果值映射到[0 , 1]之间。转换函数如下: 

 

其中max为样本数据的最大值,min为样本数据的最小值。这种方法有个缺陷就是当有新数据加入时,可能导致max和min的变化,需要重新定义。

min-max标准化python代码如下:

import numpy as np
 
arr = np.asarray([0, 10, 50, 80, 100])
for x in arr:
  x = float(x - np.min(arr))/(np.max(arr)- np.min(arr))
  print x
 
# output
# 0.0
# 0.1
# 0.5
# 0.8
# 1.0

使用这种方法的目的包括:

1、对于方差非常小的属性可以增强其稳定性;

2、维持稀疏矩阵中为0的条目。

下面将数据缩至0-1之间,采用MinMaxScaler函数

from sklearn import preprocessing  
 
import numpy as np 
 
X = np.array([[ 1., -1., 2.], 
 
       [ 2., 0., 0.], 
 
       [ 0., 1., -1.]]) 
 
min_max_scaler = preprocessing.MinMaxScaler() 
 
X_minMax = min_max_scaler.fit_transform(X)

最后输出:

array([[ 0.5 , 0. , 1. ],
          [ 1. , 0.5 , 0.33333333], 
          [ 0. , 1. , 0. ]])

测试用例:

注意:这些变换都是对列进行处理。

当然,在构造类对象的时候也可以直接指定最大最小值的范围:feature_range=(min, max),此时应用的公式变为:

X_std=(X-X.min(axis=0))/(X.max(axis=0)-X.min(axis=0)) 
X_minmax=X_std/(X.max(axis=0)-X.min(axis=0))+X.min(axis=0))

Z-score标准化方法

也称为均值归一化(mean normaliztion), 给予原始数据的均值(mean)和标准差(standard deviation)进行数据的标准化。经过处理的数据符合标准正态分布,即均值为0,标准差为1。转化函数为: 

 

其中 μμ 为所有样本数据的均值,σσ为所有样本数据的标准差。

import numpy as np
 
arr = np.asarray([0, 10, 50, 80, 100])
for x in arr:
  x = float(x - arr.mean())/arr.std()
  print x
 
# output
# -1.24101045599
# -0.982466610991
# 0.0517087689995
# 0.827340303992
# 1.34442799399

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

更多精彩内容其他人还在看

Python中模块string.py详解

这篇文章主要介绍了Python中模块之string.py的相关资料,文中介绍的非常详细,对大家具有一定的参考价值,需要的朋友们下面来一起看看吧。
收藏 0 赞 0 分享

Python中关键字nonlocal和global的声明与解析

这篇文章主要给大家介绍了关于Python中关键字nonlocal和global的声明与解析的相关资料,文中介绍的非常详细,相信对大家具有一定的参考价值,需要的朋友们下面来一起看看吧。
收藏 0 赞 0 分享

python中pandas.DataFrame对行与列求和及添加新行与列示例

pandas是python环境下最有名的数据统计包,而DataFrame翻译为数据框,是一种数据组织方式,这篇文章主要给大家介绍了python中pandas.DataFrame对行与列求和及添加新行与列的方法,文中给出了详细的示例代码,需要的朋友可以参考借鉴,下面来一起看看吧。
收藏 0 赞 0 分享

Python中str.format()详解

本文主要给大家详细介绍的是python编程中str.format()的基本语法和高级用法,非常的详细,并附有示例,希望大家能够喜欢
收藏 0 赞 0 分享

python中pandas.DataFrame的简单操作方法(创建、索引、增添与删除)

这篇文章主要介绍了python中pandas.DataFrame的简单操作方法,其中包括创建、索引、增添与删除等的相关资料,文中介绍的非常详细,需要的朋友可以参考借鉴,下面来一起看看吧。
收藏 0 赞 0 分享

Python IDLE 错误:IDLE''s subprocess didn''t make connection 的解决方案

这篇文章主要介绍了Python IDLE 错误:IDLE's subprocess didn't make connection 的解决方案的相关资料,需要的朋友可以参考下
收藏 0 赞 0 分享

Python中类型检查的详细介绍

Python是一种非常动态的语言,函数定义中完全没有类型约束。下面这篇文章主要给大家详细介绍了Python中类型检查的相关资料,需要的朋友可以参考借鉴,下面来一起看看吧。
收藏 0 赞 0 分享

利用python程序生成word和PDF文档的方法

这篇文章主要给大家介绍了利用python程序生成word和PDF文档的方法,文中给出了详细的介绍和示例代码,相信对大家具有一定的参考价值,有需要的朋友们下面来一起看看吧。
收藏 0 赞 0 分享

python用装饰器自动注册Tornado路由详解

这篇文章主要给大家介绍了python用装饰器自动注册Tornado路由,文中给出了三个版本的解决方法,有需要的朋友可以参考借鉴,下面来一起看看吧。
收藏 0 赞 0 分享

让python 3支持mysqldb的解决方法

这篇文章主要介绍了关于让python 3支持mysqldb的解决方法,文中给出解决的示例代码,相信对大家具有一定的参考价值,有需要的朋友可以一起来看看。
收藏 0 赞 0 分享
查看更多