通过python的matplotlib包将Tensorflow数据进行可视化的方法

所属分类: 脚本专栏 / python 阅读数: 1457
收藏 0 赞 0 分享

使用matplotlib中的一些函数将tensorflow中的数据可视化,更加便于分析

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

def add_layer(inputs, in_size, out_size, activation_function=None):
  Weights = tf.Variable(tf.random_normal([in_size, out_size]))
  biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
  Wx_plus_b = tf.matmul(inputs, Weights) + biases
  if activation_function is None:
    outputs = Wx_plus_b
  else:
    outputs = activation_function(Wx_plus_b)
  return outputs

# Make up some real data
x_data = np.linspace(-1, 1, 300)[:, np.newaxis]
noise = np.random.normal(0, 0.05, x_data.shape)
y_data = np.square(x_data) - 0.5 + noise


# define placeholder for inputs to network
xs = tf.placeholder(tf.float32, [None, 1])
ys = tf.placeholder(tf.float32, [None, 1])
# add hidden layer
l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu)
# add output layer
prediction = add_layer(l1, 10, 1, activation_function=None)

# the error between prediction and real data
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction), reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
# important step

#initialize_all_variables已被弃用,使用tf.global_variables_initializer代替。 
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)

# plot the real data
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.scatter(x_data, y_data)
plt.ion() #使plt不会在show之后停止而是继续运行
plt.show()


for i in range(1000):
  # training
  sess.run(train_step, feed_dict={xs: x_data, ys: y_data})
  if i % 50 == 0:
    # to visualize the result and improvement
    try:
      ax.lines.remove(lines[0]) #在每一次绘图之前先讲上一次绘图删除,使得画面更加清晰
    except Exception:
      pass
    prediction_value = sess.run(prediction, feed_dict={xs: x_data})
    # plot the prediction
    lines = ax.plot(x_data, prediction_value, 'r-', lw=5) #'r-'指绘制一个红色的线
    plt.pause(1) #指等待一秒钟

运行结果如下:(实际效果应该是动态的,应当使用ipython运行,使用jupyter运行则图片不是动态的)

python matplotlib包将Tensorflow数据进行可视化

注意:initialize_all_variables已被弃用,使用tf.global_variables_initializer代替。

以上这篇通过python的matplotlib包将Tensorflow数据进行可视化的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

更多精彩内容其他人还在看

python进行TCP端口扫描的实现

这篇文章主要介绍了python进行TCP端口扫描的实现,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python简单获取二维数组行列数的方法示例

这篇文章主要介绍了Python简单获取二维数组行列数的方法,结合实例形式分析了Python基于numpy模块的二维数组相关运算技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

Python实现的字典排序操作示例【按键名key与键值value排序】

这篇文章主要介绍了Python实现的字典排序操作,结合实例形式分析了Python针对字典分别按照键名key与键值value进行排序的相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

Python类装饰器实现方法详解

这篇文章主要介绍了Python类装饰器实现方法,结合实例形式较为详细的分析了Python类装饰器的相关概念、原理、实现方法与使用技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

使用python对文件中的单词进行提取的方法示例

这篇文章主要介绍了使用python对文件中的单词进行提取的方法示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
收藏 0 赞 0 分享

Python函数装饰器实现方法详解

这篇文章主要介绍了Python函数装饰器实现方法,结合实例形式较为详细的分析了Python函数装饰器的概念、功能、用法及相关操作注意事项,需要的朋友可以参考下
收藏 0 赞 0 分享

python 删除字符串中连续多个空格并保留一个的方法

今天小编就为大家分享一篇python 删除字符串中连续多个空格并保留一个的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

python 文本单词提取和词频统计的实例

今天小编就为大家分享一篇python 文本单词提取和词频统计的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python装饰器基础概念与用法详解

这篇文章主要介绍了Python装饰器基础概念与用法,结合实例形式详细分析了Python装饰器的概念、功能、用法及相关操作注意事项,需要的朋友可以参考下
收藏 0 赞 0 分享

对python 读取线的shp文件实例详解

今天小编就为大家分享一篇对python 读取线的shp文件实例详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享
查看更多