关于Django ForeignKey 反向查询中filter和_set的效率对比详解

所属分类: 脚本专栏 / python 阅读数: 1635
收藏 0 赞 0 分享

前言

大家使用 Django 创建模型的时候一定会经常使用 ForeignKey 来创建两个表格之间多对一的外键关系,例如B中有一个 models.ForeignKey(A) 。而当我们需要反向查询 A 中某个具体实例所关联的 B 时,可能会用到 A.B_set.all() 或 B.objects.filter(A) 这两种不同的方法。

不知道大家有没有也想过一个问题:当网站实际上线后,SEO强调页面加载速度,而当面对不断增大的请求量,这两种方法的哪一种速度更快?

馆主我产生了这个疑问,所以就打算跑一下试试看看。馆主尚属小白,如有不对的地方,还请各位客官登录一下账号,留言指点!

实验环境

操作系统: Manjaro Linux 17.1-rc2 
Python: Python 3.6.3 
Django: Django 1.11.7 
数据库: SQLite 3.21.0 
CPU: i3-4130 @ 3.4GHz 
内存: DDR3 1600 8G + 4G

实验计划

分别创建“问题”模型 Questions 和“答案”模型 Answers ,答案模型对于问题模型存在多对一关系 ForeignKey 创建一个问题和两个答案。然后分别使用两种不同的方法运行查询数据 10000 次比较消耗的时间。

实验实施

创建实验模型

# myapp/models.py

from django.db import models

class Questions(models.Model):
  '''问题的模型'''
  title = models.CharField('标题', max_length=100)
  content = models.TextField('描述')


class Answers(models.Model):
  '''答案的模型'''
  question = models.ForeignKey(Questions, on_delete=models.CASCADE, verbose_name='问题')
  content = models.TextField('答案')


然后我们进入 django 的 shell 为模型增加数据并编写我们的测试。

>>> from myapp.models import Questions, Answers

# 创建第一个问题
Questions.objects.create(
  title = '这是第一个问题么?'
  content = '我认为这是第一个问题,不知道是不是真的啊?'
  )

# 创建第一个答案
Answers.objects.create(
  question = Questions.objects.get(pk=1),
  content = '你说对了了,这是第一个问题'
  )


# 创建第二个答案
Answers.objects.create(
  question = Questions.objects.get(pk=1),
  content = '题主,你是第一个问题,但我是第二个答案么?'
  )

利用 timeit 测试两种方法消耗的时间

from timeit import timeit

# 构建使用 _set 方法的函数
def time_test_1():
  question = Question.objects.get(pk=1)
  answers = question.answers_set.all()


# 构建使用 filter 方法的函数
def time_test_2():
  question = Question.objects.get(pk=1)
  answers = Answers.objects.filter(question=question)

# 使用 timeit 测试 10000 次
timeit(time_test_1, number=10000)
5.346277045000534

timeit(time_test_2, number=10000)
5.11136907800028

实际经过多次测试,至少我这样的用法来看 使用A.B_set.all() 反向查询消耗的时间总是比 B.objects.filter(A) 过滤筛选方法多消耗 0.2 - 0.3 秒钟左右。所以但从时间成本来考虑的话还是使用 filter 筛选效率更高一些。

以上这篇关于Django ForeignKey 反向查询中filter和_set的效率对比详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

更多精彩内容其他人还在看

python进行TCP端口扫描的实现

这篇文章主要介绍了python进行TCP端口扫描的实现,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python简单获取二维数组行列数的方法示例

这篇文章主要介绍了Python简单获取二维数组行列数的方法,结合实例形式分析了Python基于numpy模块的二维数组相关运算技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

Python实现的字典排序操作示例【按键名key与键值value排序】

这篇文章主要介绍了Python实现的字典排序操作,结合实例形式分析了Python针对字典分别按照键名key与键值value进行排序的相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

Python类装饰器实现方法详解

这篇文章主要介绍了Python类装饰器实现方法,结合实例形式较为详细的分析了Python类装饰器的相关概念、原理、实现方法与使用技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

使用python对文件中的单词进行提取的方法示例

这篇文章主要介绍了使用python对文件中的单词进行提取的方法示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
收藏 0 赞 0 分享

Python函数装饰器实现方法详解

这篇文章主要介绍了Python函数装饰器实现方法,结合实例形式较为详细的分析了Python函数装饰器的概念、功能、用法及相关操作注意事项,需要的朋友可以参考下
收藏 0 赞 0 分享

python 删除字符串中连续多个空格并保留一个的方法

今天小编就为大家分享一篇python 删除字符串中连续多个空格并保留一个的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

python 文本单词提取和词频统计的实例

今天小编就为大家分享一篇python 文本单词提取和词频统计的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python装饰器基础概念与用法详解

这篇文章主要介绍了Python装饰器基础概念与用法,结合实例形式详细分析了Python装饰器的概念、功能、用法及相关操作注意事项,需要的朋友可以参考下
收藏 0 赞 0 分享

对python 读取线的shp文件实例详解

今天小编就为大家分享一篇对python 读取线的shp文件实例详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享
查看更多