pandas中apply和transform方法的性能比较及区别介绍

所属分类: 脚本专栏 / python 阅读数: 1154
收藏 0 赞 0 分享

1. apply与transform

首先讲一下apply() 与transform()的相同点与不同点

相同点:

都能针对dataframe完成特征的计算,并且常常与groupby()方法一起使用。

不同点:

apply()里面可以跟自定义的函数,包括简单的求和函数以及复杂的特征间的差值函数等(注:apply不能直接使用agg()方法 / transform()中的python内置函数,例如sum、max、min、'count‘等方法)

transform() 里面不能跟自定义的特征交互函数,因为transform是真针对每一元素(即每一列特征操作)进行计算,也就是说在使用 transform() 方法时,需要记得三点:

1、它只能对每一列进行计算,所以在groupby()之后,.transform()之前是要指定要操作的列,这点也与apply有很大的不同。

2、由于是只能对每一列计算,所以方法的通用性相比apply()就局限了很多,例如只能求列的最大/最小/均值/方差/分箱等操作

3、transform还有什么用呢?最简单的情况是试图将函数的结果分配回原始的dataframe。也就是说返回的shape是(len(df),1)。注:如果与groupby()方法联合使用,需要对值进行去重

2. 各方法耗时

分别计算在同样简单需求下各组合方法的计算时长

2.1 transform() 方法+自定义函数


2.2 transform() 方法+python内置方法


2.3 apply() 方法+自定义函数


2.4 agg() 方法+自定义函数


2.5 agg() 方法+python内置方法


2.6 结论

agg()+python内置方法的计算速度最快,其次是transform()+python内置方法。而 transform() 方法+自定义函数 的组合方法最慢,需要避免使用!

而下面两图中红框内容可观察发现:python自带的stats统计模块在pandas结构中的计算也非常慢,也需要避免使用!

3. 实例分析

需求:计算每个用户每天

某种行为消费次数、消费总额、消费均额、消费最大额、消费最小额

在几个终端支付、最常支付终端号、最常支付终端号的支付次数、最少支付终端号、最少支付终端号的支付次数

某种行为最常消费发生时间段、最常消费发生时间段的消费次数、最少消费发生时间段、最少消费发生时间段的消费次数

某种行为最早消费时间、最晚消费时间

原始数据信息:306626 x 9


具体选择哪种方法处理,根据实际情况确定,在面对复杂计算时,transform() 与apply()结合使用往往会有意想不到的效果!

需要注意的是,在与apply()一起使用时,transform需要进行去重操作,一般是通过指定一或多个列完成。

此外,匿名函数永远不是一个很好的办法,在进行简单计算时,无论是使用transfrom、agg还是apply,都要尽可能使用自带方法!!!

4. 小技巧

在使用apply()方法处理大数据级时,可以考虑使用joblib中的多线程/多进程模块构造相应函数执行计算,以下分别是采用多进程和单进程的耗时时长。

可以看到,在260W的数据集上,多进程比单进程的计算速度可以提升约17%~61%  。

以上所述是小编给大家介绍的pandas中apply和transform方法的性能比较,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对脚本之家网站的支持!

更多精彩内容其他人还在看

python进行TCP端口扫描的实现

这篇文章主要介绍了python进行TCP端口扫描的实现,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python简单获取二维数组行列数的方法示例

这篇文章主要介绍了Python简单获取二维数组行列数的方法,结合实例形式分析了Python基于numpy模块的二维数组相关运算技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

Python实现的字典排序操作示例【按键名key与键值value排序】

这篇文章主要介绍了Python实现的字典排序操作,结合实例形式分析了Python针对字典分别按照键名key与键值value进行排序的相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

Python类装饰器实现方法详解

这篇文章主要介绍了Python类装饰器实现方法,结合实例形式较为详细的分析了Python类装饰器的相关概念、原理、实现方法与使用技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

使用python对文件中的单词进行提取的方法示例

这篇文章主要介绍了使用python对文件中的单词进行提取的方法示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
收藏 0 赞 0 分享

Python函数装饰器实现方法详解

这篇文章主要介绍了Python函数装饰器实现方法,结合实例形式较为详细的分析了Python函数装饰器的概念、功能、用法及相关操作注意事项,需要的朋友可以参考下
收藏 0 赞 0 分享

python 删除字符串中连续多个空格并保留一个的方法

今天小编就为大家分享一篇python 删除字符串中连续多个空格并保留一个的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

python 文本单词提取和词频统计的实例

今天小编就为大家分享一篇python 文本单词提取和词频统计的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python装饰器基础概念与用法详解

这篇文章主要介绍了Python装饰器基础概念与用法,结合实例形式详细分析了Python装饰器的概念、功能、用法及相关操作注意事项,需要的朋友可以参考下
收藏 0 赞 0 分享

对python 读取线的shp文件实例详解

今天小编就为大家分享一篇对python 读取线的shp文件实例详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享
查看更多