python实现机器学习之多元线性回归

所属分类: 脚本专栏 / python 阅读数: 1139
收藏 0 赞 0 分享

总体思路与一元线性回归思想一样,现在将数据以矩阵形式进行运算,更加方便。
一元线性回归实现代码

下面是多元线性回归用Python实现的代码:

import numpy as np

def linearRegression(data_X,data_Y,learningRate,loopNum):
 W = np.zeros(shape=[1, data_X.shape[1]])
 # W的shape取决于特征个数,而x的行是样本个数,x的列是特征值个数
 # 所需要的W的形式为 行=特征个数,列=1 这样的矩阵。但也可以用1行,再进行转置:W.T
 # X.shape[0]取X的行数,X.shape[1]取X的列数
 b = 0

 #梯度下降
 for i in range(loopNum):
  W_derivative = np.zeros(shape=[1, data_X.shape[1]])
  b_derivative, cost = 0, 0

  WXPlusb = np.dot(data_X, W.T) + b # W.T:W的转置
  W_derivative += np.dot((WXPlusb - data_Y).T, data_X) # np.dot:矩阵乘法
  b_derivative += np.dot(np.ones(shape=[1, data_X.shape[0]]), WXPlusb - data_Y)
  cost += (WXPlusb - data_Y)*(WXPlusb - data_Y)
  W_derivative = W_derivative / data_X.shape[0] # data_X.shape[0]:data_X矩阵的行数,即样本个数
  b_derivative = b_derivative / data_X.shape[0]


  W = W - learningRate*W_derivative
  b = b - learningRate*b_derivative

  cost = cost/(2*data_X.shape[0])
  if i % 100 == 0:
   print(cost)
 print(W)
 print(b)

if __name__== "__main__":
 X = np.random.normal(0, 10, 100)
 noise = np.random.normal(0, 0.05, 20)
 W = np.array([[3, 5, 8, 2, 1]]) #设5个特征值
 X = X.reshape(20, 5)  #reshape成20行5列
 noise = noise.reshape(20, 1)
 Y = np.dot(X, W.T)+6 + noise
 linearRegression(X, Y, 0.003, 5000)

特别需要注意的是要弄清:矩阵的形状

在梯度下降的时候,计算两个偏导值,这里面的矩阵形状变化需要注意。

梯度下降数学式子:

以代码中为例,来分析一下梯度下降中的矩阵形状。
代码中设了5个特征。

WXPlusb = np.dot(data_X, W.T) + b

W是一个1*5矩阵,data_X是一个20*5矩阵
WXPlusb矩阵形状=20*5矩阵乘上5*1(W的转置)的矩阵=20*1矩阵

W_derivative += np.dot((WXPlusb - data_Y).T, data_X)

W偏导矩阵形状=1*20矩阵乘上 20*5矩阵=1*5矩阵

b_derivative += np.dot(np.ones(shape=[1, data_X.shape[0]]), WXPlusb - data_Y)

b是一个数,用1*20的全1矩阵乘上20*1矩阵=一个数

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

更多精彩内容其他人还在看

QML用PathView实现轮播图

这篇文章主要为大家详细介绍了QML用PathView实现轮播图,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
收藏 0 赞 0 分享

Opencv图像处理:如何判断图片里某个颜色值占的比例

这篇文章主要介绍了Opencv图像处理:如何判断图片里某个颜色值占的比例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

python golang中grpc 使用示例代码详解

这篇文章主要介绍了python golang中grpc 使用,本文通过示例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
收藏 0 赞 0 分享

浅谈python opencv对图像颜色通道进行加减操作溢出

这篇文章主要介绍了浅谈python opencv对图像颜色通道进行加减操作溢出,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

解决python运行启动报错问题

这篇文章主要介绍了解决python运行启动报错问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python常见反爬虫机制解决方案

这篇文章主要介绍了Python常见反爬虫机制解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
收藏 0 赞 0 分享

解决pycharm导入本地py文件时,模块下方出现红色波浪线的问题

这篇文章主要介绍了解决pycharm导入本地py文件时,模块下方出现红色波浪线的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

pycharm设置默认的UTF-8编码模式的方法详解

这篇文章主要介绍了pycharm设置默认的UTF-8编码模式,本文通过图文并茂的形式给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
收藏 0 赞 0 分享

浅谈Pycharm的项目文件名是红色的原因及解决方式

这篇文章主要介绍了浅谈Pycharm的项目文件名是红色的原因及解决方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python网络爬虫四大选择器用法原理总结

这篇文章主要介绍了Python网络爬虫四大选择器用法原理总结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
收藏 0 赞 0 分享
查看更多