Tensorflow之Saver的用法详解

所属分类: 脚本专栏 / python 阅读数: 561
收藏 0 赞 0 分享

Saver的用法

1. Saver的背景介绍

我们经常在训练完一个模型之后希望保存训练的结果,这些结果指的是模型的参数,以便下次迭代的训练或者用作测试。Tensorflow针对这一需求提供了Saver类。

Saver类提供了向checkpoints文件保存和从checkpoints文件中恢复变量的相关方法。Checkpoints文件是一个二进制文件,它把变量名映射到对应的tensor值 。

只要提供一个计数器,当计数器触发时,Saver类可以自动的生成checkpoint文件。这让我们可以在训练过程中保存多个中间结果。例如,我们可以保存每一步训练的结果。

为了避免填满整个磁盘,Saver可以自动的管理Checkpoints文件。例如,我们可以指定保存最近的N个Checkpoints文件。

2. Saver的实例

下面以一个例子来讲述如何使用Saver类 

import tensorflow as tf 
import numpy as np  
x = tf.placeholder(tf.float32, shape=[None, 1]) 
y = 4 * x + 4  
w = tf.Variable(tf.random_normal([1], -1, 1)) 
b = tf.Variable(tf.zeros([1])) 
y_predict = w * x + b 
loss = tf.reduce_mean(tf.square(y - y_predict)) 
optimizer = tf.train.GradientDescentOptimizer(0.5) 
train = optimizer.minimize(loss)  
isTrain = False 
train_steps = 100 
checkpoint_steps = 50 
checkpoint_dir = ''  
saver = tf.train.Saver() # defaults to saving all variables - in this case w and b 
x_data = np.reshape(np.random.rand(10).astype(np.float32), (10, 1))  
with tf.Session() as sess: 
  sess.run(tf.initialize_all_variables()) 
  if isTrain: 
    for i in xrange(train_steps): 
      sess.run(train, feed_dict={x: x_data}) 
      if (i + 1) % checkpoint_steps == 0: 
        saver.save(sess, checkpoint_dir + 'model.ckpt', global_step=i+1) 
  else: 
    ckpt = tf.train.get_checkpoint_state(checkpoint_dir) 
    if ckpt and ckpt.model_checkpoint_path: 
      saver.restore(sess, ckpt.model_checkpoint_path) 
    else: 
      pass 
    print(sess.run(w)) 
    print(sess.run(b)) 
  1. isTrain:用来区分训练阶段和测试阶段,True表示训练,False表示测试
  2. train_steps:表示训练的次数,例子中使用100
  3. checkpoint_steps:表示训练多少次保存一下checkpoints,例子中使用50
  4. checkpoint_dir:表示checkpoints文件的保存路径,例子中使用当前路径

2.1 训练阶段

使用Saver.save()方法保存模型:

  1. sess:表示当前会话,当前会话记录了当前的变量值
  2. checkpoint_dir + 'model.ckpt':表示存储的文件名
  3. global_step:表示当前是第几步

训练完成后,当前目录底下会多出5个文件。

打开名为“checkpoint”的文件,可以看到保存记录,和最新的模型存储位置。

2.1测试阶段

测试阶段使用saver.restore()方法恢复变量:

sess:表示当前会话,之前保存的结果将被加载入这个会话

ckpt.model_checkpoint_path:表示模型存储的位置,不需要提供模型的名字,它会去查看checkpoint文件,看看最新的是谁,叫做什么。

运行结果如下图所示,加载了之前训练的参数w和b的结果

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

更多精彩内容其他人还在看

Python实现按学生年龄排序的实际问题详解

这篇文章主要给大家介绍了关于Python实现按学生年龄排序实际问题的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面跟着小编来一起学习学习吧。
收藏 0 赞 0 分享

Python开发的HTTP库requests详解

Requests是用Python语言编写,基于urllib,采用Apache2 Licensed开源协议的HTTP库。它比urllib更加方便,可以节约我们大量的工作,完全满足HTTP测试需求。Requests的哲学是以PEP 20 的习语为中心开发的,所以它比urllib更加P
收藏 0 赞 0 分享

Python网络爬虫与信息提取(实例讲解)

下面小编就为大家带来一篇Python网络爬虫与信息提取(实例讲解)。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

在python3环境下的Django中使用MySQL数据库的实例

下面小编就为大家带来一篇在python3环境下的Django中使用MySQL数据库的实例。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python 3.x读写csv文件中数字的方法示例

在我们日常开发中经常需要对csv文件进行读写,下面这篇文章主要给大家介绍了关于Python 3.x读写csv文件中数字的相关资料,文中通过示例代码介绍的非常详细,对大家具有一定的参考学习价值,需要的朋友们下面跟着小编来一起学习学习吧。
收藏 0 赞 0 分享

Python实现解析Bit Torrent种子文件内容的方法

这篇文章主要介绍了Python实现解析Bit Torrent种子文件内容的方法,结合实例形式分析了Python针对Torrent文件的读取与解析相关操作技巧与注意事项,需要的朋友可以参考下
收藏 0 赞 0 分享

Python实现文件内容批量追加的方法示例

这篇文章主要介绍了Python实现文件内容批量追加的方法,结合实例形式分析了Python文件的读写相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

Python简单实现自动删除目录下空文件夹的方法

这篇文章主要介绍了Python简单实现自动删除目录下空文件夹的方法,涉及Python针对文件与目录的读取、判断、删除等相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

简单学习Python多进程Multiprocessing

这篇文章主要和大家一起简单的学习Python多进程Multiprocessing ,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
收藏 0 赞 0 分享

Python导入模块时遇到的错误分析

这篇文章主要给大家详细解释了在Python处理导入模块的时候出现错误以及具体的情况分析,非常的详尽,有需要的小伙伴可以参考下
收藏 0 赞 0 分享
查看更多