Pytorch入门之mnist分类实例

所属分类: 脚本专栏 / python 阅读数: 1342
收藏 0 赞 0 分享

本文实例为大家分享了Pytorch入门之mnist分类的具体代码,供大家参考,具体内容如下

#!/usr/bin/env python
# -*- coding: utf-8 -*-
__author__ = 'denny'
__time__ = '2017-9-9 9:03'

import torch
import torchvision
from torch.autograd import Variable
import torch.utils.data.dataloader as Data

train_data = torchvision.datasets.MNIST(
 './mnist', train=True, transform=torchvision.transforms.ToTensor(), download=True
)
test_data = torchvision.datasets.MNIST(
 './mnist', train=False, transform=torchvision.transforms.ToTensor()
)
print("train_data:", train_data.train_data.size())
print("train_labels:", train_data.train_labels.size())
print("test_data:", test_data.test_data.size())

train_loader = Data.DataLoader(dataset=train_data, batch_size=64, shuffle=True)
test_loader = Data.DataLoader(dataset=test_data, batch_size=64)


class Net(torch.nn.Module):
 def __init__(self):
 super(Net, self).__init__()
 self.conv1 = torch.nn.Sequential(
  torch.nn.Conv2d(1, 32, 3, 1, 1),
  torch.nn.ReLU(),
  torch.nn.MaxPool2d(2))
 self.conv2 = torch.nn.Sequential(
  torch.nn.Conv2d(32, 64, 3, 1, 1),
  torch.nn.ReLU(),
  torch.nn.MaxPool2d(2)
 )
 self.conv3 = torch.nn.Sequential(
  torch.nn.Conv2d(64, 64, 3, 1, 1),
  torch.nn.ReLU(),
  torch.nn.MaxPool2d(2)
 )
 self.dense = torch.nn.Sequential(
  torch.nn.Linear(64 * 3 * 3, 128),
  torch.nn.ReLU(),
  torch.nn.Linear(128, 10)
 )

 def forward(self, x):
 conv1_out = self.conv1(x)
 conv2_out = self.conv2(conv1_out)
 conv3_out = self.conv3(conv2_out)
 res = conv3_out.view(conv3_out.size(0), -1)
 out = self.dense(res)
 return out


model = Net()
print(model)

optimizer = torch.optim.Adam(model.parameters())
loss_func = torch.nn.CrossEntropyLoss()

for epoch in range(10):
 print('epoch {}'.format(epoch + 1))
 # training-----------------------------
 train_loss = 0.
 train_acc = 0.
 for batch_x, batch_y in train_loader:
 batch_x, batch_y = Variable(batch_x), Variable(batch_y)
 out = model(batch_x)
 loss = loss_func(out, batch_y)
 train_loss += loss.data[0]
 pred = torch.max(out, 1)[1]
 train_correct = (pred == batch_y).sum()
 train_acc += train_correct.data[0]
 optimizer.zero_grad()
 loss.backward()
 optimizer.step()
 print('Train Loss: {:.6f}, Acc: {:.6f}'.format(train_loss / (len(
 train_data)), train_acc / (len(train_data))))

 # evaluation--------------------------------
 model.eval()
 eval_loss = 0.
 eval_acc = 0.
 for batch_x, batch_y in test_loader:
 batch_x, batch_y = Variable(batch_x, volatile=True), Variable(batch_y, volatile=True)
 out = model(batch_x)
 loss = loss_func(out, batch_y)
 eval_loss += loss.data[0]
 pred = torch.max(out, 1)[1]
 num_correct = (pred == batch_y).sum()
 eval_acc += num_correct.data[0]
 print('Test Loss: {:.6f}, Acc: {:.6f}'.format(eval_loss / (len(
 test_data)), eval_acc / (len(test_data))))

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

更多精彩内容其他人还在看

Python实现按学生年龄排序的实际问题详解

这篇文章主要给大家介绍了关于Python实现按学生年龄排序实际问题的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面跟着小编来一起学习学习吧。
收藏 0 赞 0 分享

Python开发的HTTP库requests详解

Requests是用Python语言编写,基于urllib,采用Apache2 Licensed开源协议的HTTP库。它比urllib更加方便,可以节约我们大量的工作,完全满足HTTP测试需求。Requests的哲学是以PEP 20 的习语为中心开发的,所以它比urllib更加P
收藏 0 赞 0 分享

Python网络爬虫与信息提取(实例讲解)

下面小编就为大家带来一篇Python网络爬虫与信息提取(实例讲解)。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

在python3环境下的Django中使用MySQL数据库的实例

下面小编就为大家带来一篇在python3环境下的Django中使用MySQL数据库的实例。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python 3.x读写csv文件中数字的方法示例

在我们日常开发中经常需要对csv文件进行读写,下面这篇文章主要给大家介绍了关于Python 3.x读写csv文件中数字的相关资料,文中通过示例代码介绍的非常详细,对大家具有一定的参考学习价值,需要的朋友们下面跟着小编来一起学习学习吧。
收藏 0 赞 0 分享

Python实现解析Bit Torrent种子文件内容的方法

这篇文章主要介绍了Python实现解析Bit Torrent种子文件内容的方法,结合实例形式分析了Python针对Torrent文件的读取与解析相关操作技巧与注意事项,需要的朋友可以参考下
收藏 0 赞 0 分享

Python实现文件内容批量追加的方法示例

这篇文章主要介绍了Python实现文件内容批量追加的方法,结合实例形式分析了Python文件的读写相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

Python简单实现自动删除目录下空文件夹的方法

这篇文章主要介绍了Python简单实现自动删除目录下空文件夹的方法,涉及Python针对文件与目录的读取、判断、删除等相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

简单学习Python多进程Multiprocessing

这篇文章主要和大家一起简单的学习Python多进程Multiprocessing ,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
收藏 0 赞 0 分享

Python导入模块时遇到的错误分析

这篇文章主要给大家详细解释了在Python处理导入模块的时候出现错误以及具体的情况分析,非常的详尽,有需要的小伙伴可以参考下
收藏 0 赞 0 分享
查看更多