浅谈Python Opencv中gamma变换的使用详解

所属分类: 脚本专栏 / python 阅读数: 726
收藏 0 赞 0 分享

伽马变换就是用来图像增强,其提升了暗部细节,简单来说就是通过非线性变换,让图像从暴光强度的线性响应变得更接近人眼感受的响应,即将漂白(相机曝光)或过暗(曝光不足)的图片,进行矫正。

伽马变换的基本形式如下:

大于1时,对图像的灰度分布直方图具有拉伸作用(使灰度向高灰度值延展),而小于1时,对图像的灰度分布直方图具有收缩作用(是使灰度向低灰度值方向靠拢)。

#分道计算每个通道的直方图
img0 = cv2.imread('12.jpg')
hist_b = cv2.calcHist([img0],[0],None,[256],[0,256])
hist_g = cv2.calcHist([img0],[1],None,[256],[0,256])
hist_r = cv2.calcHist([img0],[2],None,[256],[0,256])
def gamma_trans(img,gamma):
 #具体做法先归一化到1,然后gamma作为指数值求出新的像素值再还原
 gamma_table = [np.power(x/255.0,gamma)*255.0 for x in range(256)]
 gamma_table = np.round(np.array(gamma_table)).astype(np.uint8)
 #实现映射用的是Opencv的查表函数
 return cv2.LUT(img0,gamma_table)
img0_corrted = gamma_trans(img0, 0.5)
cv2.imshow('img0',img0)
cv2.imshow('gamma_image',img0_corrted)
cv2.imwrite('gamma_image.png',img0_corrted)
#分通道计算Gamma校正后的直方图
hist_b_c =cv2.calcHist([img0_corrted],[0],None,[256],[0,256])
hist_g_c =cv2.calcHist([img0_corrted],[1],None,[256],[0,256])
hist_r_c =cv2.calcHist([img0_corrted],[2],None,[256],[0,256])
fig = plt.figure('gamma')
pix_hists = [[hist_b, hist_g, hist_r],
    [hist_b_c, hist_g_c, hist_r_c]]
pix_vals = range(256)
for sub_plt, pix_hist in zip([121, 122], pix_hists):
 ax = fig.add_subplot(sub_plt, projection='3d')
 for c, z, channel_hist in zip(['b', 'g', 'r'], [20, 10, 0], pix_hist):
  cs = [c] * 256
  ax.bar(pix_vals, channel_hist, zs=z, zdir='y', color=cs, alpha=0.618, edgecolor='none', lw=0)
 ax.set_xlabel('Pixel Values')
 ax.set_xlim([0, 256])
 ax.set_ylabel('Count')
 ax.set_zlabel('Channels')
plt.show()
cv2.waitKey()

以上这篇浅谈Python Opencv中gamma变换的使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

更多精彩内容其他人还在看

Python实现按学生年龄排序的实际问题详解

这篇文章主要给大家介绍了关于Python实现按学生年龄排序实际问题的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面跟着小编来一起学习学习吧。
收藏 0 赞 0 分享

Python开发的HTTP库requests详解

Requests是用Python语言编写,基于urllib,采用Apache2 Licensed开源协议的HTTP库。它比urllib更加方便,可以节约我们大量的工作,完全满足HTTP测试需求。Requests的哲学是以PEP 20 的习语为中心开发的,所以它比urllib更加P
收藏 0 赞 0 分享

Python网络爬虫与信息提取(实例讲解)

下面小编就为大家带来一篇Python网络爬虫与信息提取(实例讲解)。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

在python3环境下的Django中使用MySQL数据库的实例

下面小编就为大家带来一篇在python3环境下的Django中使用MySQL数据库的实例。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python 3.x读写csv文件中数字的方法示例

在我们日常开发中经常需要对csv文件进行读写,下面这篇文章主要给大家介绍了关于Python 3.x读写csv文件中数字的相关资料,文中通过示例代码介绍的非常详细,对大家具有一定的参考学习价值,需要的朋友们下面跟着小编来一起学习学习吧。
收藏 0 赞 0 分享

Python实现解析Bit Torrent种子文件内容的方法

这篇文章主要介绍了Python实现解析Bit Torrent种子文件内容的方法,结合实例形式分析了Python针对Torrent文件的读取与解析相关操作技巧与注意事项,需要的朋友可以参考下
收藏 0 赞 0 分享

Python实现文件内容批量追加的方法示例

这篇文章主要介绍了Python实现文件内容批量追加的方法,结合实例形式分析了Python文件的读写相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

Python简单实现自动删除目录下空文件夹的方法

这篇文章主要介绍了Python简单实现自动删除目录下空文件夹的方法,涉及Python针对文件与目录的读取、判断、删除等相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

简单学习Python多进程Multiprocessing

这篇文章主要和大家一起简单的学习Python多进程Multiprocessing ,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
收藏 0 赞 0 分享

Python导入模块时遇到的错误分析

这篇文章主要给大家详细解释了在Python处理导入模块的时候出现错误以及具体的情况分析,非常的详尽,有需要的小伙伴可以参考下
收藏 0 赞 0 分享
查看更多