Python基础教程之利用期物处理并发

所属分类: 脚本专栏 / python 阅读数: 1406
收藏 0 赞 0 分享

前言

抨击线程的往往是系统程序员,他们考虑的使用场景对一般的应用程序员来说,也许一生都不会遇到……应用程序员遇到的使用场景,99% 的情况下只需知道如何派生一堆独立的线程,然后用队列收集结果。

本文章记录了本人在学习Python基础之控制流程篇的重点知识及个人心得,打算入门Python的朋友们可以来一起学习并交流。

本文重点:

      1、掌握异步编程的相关概念;

      2、了解期物future的概念、意义和使用方法;

      3、了解Python中的阻塞型I/O函数释放GIL的特点。

一、异步编程相关概念

阻塞:程序未得到所需计算资源时被挂起的状态。换句话说,程序在等待某个操作完成期间,自身无法继续干别的事情,则称该程序在该操作上是阻塞的。

并发:描述的是程序的组织结构。指程序要被设计成多个可独立执行的子任务。并发以利用有限的计算机资源使多个任务可以被实时或近实时执行为目的。

并行:指的是多任务同时执行的程序状态,以利用多核CPU加速完成多任务为目的。

异步:为完成某个任务,不同程序单元之间过程中无需通信协调,也能完成任务的方式。

不相关的程序单元之间可以是异步的。简言之,异步意味着无序。

异步编程:以进程、线程、协程、函数/方法作为执行任务的基本单位,结合回调,事件循环、信号量等机制,以提高整体执行效率和并发能力的编程方式。

二、期物

就下载国旗为目标实现的三个客户端中,两个HTTP并发客户端比依序下载的脚本性能高很多。

由此说明使用并发可以高效处理网络I/O。

期物(future)指一种对象,表示异步执行的操作。

期物对象:concurrent.futures.Future或asyncio.Future类的实例。

三大方法:

  • Executor.submit():创建期物。
  • concurrent.futures.as_completed():迭代运行结束的期物,返回一个迭代器。
  • Executor.map(): 处理参数不同的同一个可调用对象。

小结:Executor.submit()加futures.as_completed()的组合比Executor.map()更灵活,因为submit()能处理不同的可调用对象和参数。

concurrent.futures模块的主要特色是ThreadPoolExecutor和ProcessPoolExecutor类,这两个类实现的接口能分别在不同的线程或进程中执行可调用的对象。

注意:通常情况下自己不应该创建期物,而只能由并发框架(concurrent.futures或asyncio)实例化。

实例:concurrent.futures模块应用

from concurrent import futures
from flags import save_flag, get_flag, show, main
MAX_WORKERS = 20
def download_one(cc): 
  image = get_flag(cc)
  show(cc)
  save_flag(image, cc.lower() + '.gif')
  return cc
def download_many(cc_list):
  workers = min(MAX_WORKERS, len(cc_list)) 
  with futures.ThreadPoolExecutor(workers) as executor: 
    res = executor.map(download_one, sorted(cc_list)) 
  return len(list(res))
if __name__ == '__main__':
  main(download_many) 

三、阻塞性I/O与GIL

Python标准库中所有阻塞型I/O函数都会释放全局解释器锁(GIL),允许其他线程运行。

因此尽管有GIL,Python线程仍然适合在I/O密集型系统使用。

四、线程和多进程的替代方案

对CPU密集型工作来说,要启动多个进程,规避GIL。

创建多进程最简单的方式是使用futures.ProcessPoolExecutor类。

threading和multiprocessing模块:是Python中多线程和多进程并发的低层实现。

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对脚本之家的支持。

更多精彩内容其他人还在看

Python实现按学生年龄排序的实际问题详解

这篇文章主要给大家介绍了关于Python实现按学生年龄排序实际问题的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面跟着小编来一起学习学习吧。
收藏 0 赞 0 分享

Python开发的HTTP库requests详解

Requests是用Python语言编写,基于urllib,采用Apache2 Licensed开源协议的HTTP库。它比urllib更加方便,可以节约我们大量的工作,完全满足HTTP测试需求。Requests的哲学是以PEP 20 的习语为中心开发的,所以它比urllib更加P
收藏 0 赞 0 分享

Python网络爬虫与信息提取(实例讲解)

下面小编就为大家带来一篇Python网络爬虫与信息提取(实例讲解)。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

在python3环境下的Django中使用MySQL数据库的实例

下面小编就为大家带来一篇在python3环境下的Django中使用MySQL数据库的实例。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python 3.x读写csv文件中数字的方法示例

在我们日常开发中经常需要对csv文件进行读写,下面这篇文章主要给大家介绍了关于Python 3.x读写csv文件中数字的相关资料,文中通过示例代码介绍的非常详细,对大家具有一定的参考学习价值,需要的朋友们下面跟着小编来一起学习学习吧。
收藏 0 赞 0 分享

Python实现解析Bit Torrent种子文件内容的方法

这篇文章主要介绍了Python实现解析Bit Torrent种子文件内容的方法,结合实例形式分析了Python针对Torrent文件的读取与解析相关操作技巧与注意事项,需要的朋友可以参考下
收藏 0 赞 0 分享

Python实现文件内容批量追加的方法示例

这篇文章主要介绍了Python实现文件内容批量追加的方法,结合实例形式分析了Python文件的读写相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

Python简单实现自动删除目录下空文件夹的方法

这篇文章主要介绍了Python简单实现自动删除目录下空文件夹的方法,涉及Python针对文件与目录的读取、判断、删除等相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

简单学习Python多进程Multiprocessing

这篇文章主要和大家一起简单的学习Python多进程Multiprocessing ,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
收藏 0 赞 0 分享

Python导入模块时遇到的错误分析

这篇文章主要给大家详细解释了在Python处理导入模块的时候出现错误以及具体的情况分析,非常的详尽,有需要的小伙伴可以参考下
收藏 0 赞 0 分享
查看更多