Python Numpy 数组的初始化和基本操作

所属分类: 脚本专栏 / python 阅读数: 194
收藏 0 赞 0 分享

Python 是一种高级的,动态的,多泛型的编程语言。Python代码很多时候看起来就像是伪代码一样,因此你可以使用很少的几行可读性很高的代码来实现一个非常强大的想法。

一.基础:

Numpy的主要数据类型是ndarray,即多维数组。它有以下几个属性:

ndarray.ndim:数组的维数
ndarray.shape:数组每一维的大小
ndarray.size:数组中全部元素的数量
ndarray.dtype:数组中元素的类型(numpy.int32, numpy.int16, and numpy.float64等)
ndarray.itemsize:每个元素占几个字节

例子:

>>> import numpy as np
>>> a = np.arange(15).reshape(3, 5)
>>> a
array([[ 0, 1, 2, 3, 4],
    [ 5, 6, 7, 8, 9],
    [10, 11, 12, 13, 14]])
>>> a.shape
(3, 5)
>>> a.ndim
2
>>> a.dtype.name
'int64'
>>> a.itemsize
8
>>> a.size
15
>>> type(a)
<type 'numpy.ndarray'>
>>> b = np.array([6, 7, 8])
>>> b
array([6, 7, 8])
>>> type(b)
<type 'numpy.ndarray'>

二.创建数组:

使用array函数讲tuple和list转为array:

>>> import numpy as np
>>> a = np.array([2,3,4])
>>> a
array([2, 3, 4])
>>> a.dtype
dtype('int64')
>>> b = np.array([1.2, 3.5, 5.1])
>>> b.dtype
dtype('float64')

多维数组:

>>> b = np.array([(1.5,2,3), (4,5,6)])
>>> b
array([[ 1.5, 2. , 3. ],
    [ 4. , 5. , 6. ]])

生成数组的同时指定类型:

>>> c = np.array( [ [1,2], [3,4] ], dtype=complex )
>>> c
array([[ 1.+0.j, 2.+0.j],
    [ 3.+0.j, 4.+0.j]])

生成数组并赋为特殊值:

ones:全1
zeros:全0
empty:随机数,取决于内存情况

>>> np.zeros( (3,4) )
array([[ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.]])
>>> np.ones( (2,3,4), dtype=np.int16 )        # dtype can also be specified
array([[[ 1, 1, 1, 1],
    [ 1, 1, 1, 1],
    [ 1, 1, 1, 1]],
    [[ 1, 1, 1, 1],
    [ 1, 1, 1, 1],
    [ 1, 1, 1, 1]]], dtype=int16)
>>> np.empty( (2,3) )                 # uninitialized, output may vary
array([[ 3.73603959e-262,  6.02658058e-154,  6.55490914e-260],
    [ 5.30498948e-313,  3.14673309e-307,  1.00000000e+000]])

生成均匀分布的array:

arange(最小值,最大值,步长)(左闭右开)
linspace(最小值,最大值,元素数量)

>>> np.arange( 10, 30, 5 )
array([10, 15, 20, 25])
>>> np.arange( 0, 2, 0.3 )         # it accepts float arguments
array([ 0. , 0.3, 0.6, 0.9, 1.2, 1.5, 1.8])
>>> np.linspace( 0, 2, 9 )         # 9 numbers from 0 to 2
array([ 0. , 0.25, 0.5 , 0.75, 1. , 1.25, 1.5 , 1.75, 2. ])
>>> x = np.linspace( 0, 2*pi, 100 )    # useful to evaluate function at lots of points

三.基本运算:

整个array按顺序参与运算:

>>> a = np.array( [20,30,40,50] )
>>> b = np.arange( 4 )
>>> b
array([0, 1, 2, 3])
>>> c = a-b
>>> c
array([20, 29, 38, 47])
>>> b**2
array([0, 1, 4, 9])
>>> 10*np.sin(a)
array([ 9.12945251, -9.88031624, 7.4511316 , -2.62374854])
>>> a<35
array([ True, True, False, False], dtype=bool)

两个二维使用*符号仍然是按位置一对一相乘,如果想表示矩阵乘法,使用dot:

>>> A = np.array( [[1,1],
...       [0,1]] )
>>> B = np.array( [[2,0],
...       [3,4]] )
>>> A*B             # elementwise product
array([[2, 0],
    [0, 4]])
>>> A.dot(B)          # matrix product
array([[5, 4],
    [3, 4]])
>>> np.dot(A, B)        # another matrix product
array([[5, 4],
    [3, 4]])

内置函数(min,max,sum),同时可以使用axis指定对哪一维进行操作:

>>> b = np.arange(12).reshape(3,4)
>>> b
array([[ 0, 1, 2, 3],
    [ 4, 5, 6, 7],
    [ 8, 9, 10, 11]])
>>>
>>> b.sum(axis=0)              # sum of each column
array([12, 15, 18, 21])
>>>
>>> b.min(axis=1)              # min of each row
array([0, 4, 8])
>>>
>>> b.cumsum(axis=1)             # cumulative sum along each row
array([[ 0, 1, 3, 6],
    [ 4, 9, 15, 22],
    [ 8, 17, 27, 38]])

Numpy同时提供很多全局函数

>>> B = np.arange(3)
>>> B
array([0, 1, 2])
>>> np.exp(B)
array([ 1.    , 2.71828183, 7.3890561 ])
>>> np.sqrt(B)
array([ 0.    , 1.    , 1.41421356])
>>> C = np.array([2., -1., 4.])
>>> np.add(B, C)
array([ 2., 0., 6.])

四.寻址,索引和遍历:

一维数组的遍历语法和python list类似:

>>> a = np.arange(10)**3
>>> a
array([ 0,  1,  8, 27, 64, 125, 216, 343, 512, 729])
>>> a[2]
8
>>> a[2:5]
array([ 8, 27, 64])
>>> a[:6:2] = -1000  # equivalent to a[0:6:2] = -1000; from start to position 6, exclusive, set every 2nd element to -1000
>>> a
array([-1000,   1, -1000,  27, -1000,  125,  216,  343,  512,  729])
>>> a[ : :-1]                 # reversed a
array([ 729,  512,  343,  216,  125, -1000,  27, -1000,   1, -1000])
>>> for i in a:
...   print(i**(1/3.))
...
nan
1.0
nan
3.0
nan
5.0
6.0
7.0
8.0
9.0

多维数组的访问通过给每一维指定一个索引,顺序是先高维再低维:

>>> def f(x,y):
...   return 10*x+y
...
>>> b = np.fromfunction(f,(5,4),dtype=int)
>>> b
array([[ 0, 1, 2, 3],
    [10, 11, 12, 13],
    [20, 21, 22, 23],
    [30, 31, 32, 33],
    [40, 41, 42, 43]])
>>> b[2,3]
23
>>> b[0:5, 1]            # each row in the second column of b
array([ 1, 11, 21, 31, 41])
>>> b[ : ,1]            # equivalent to the previous example
array([ 1, 11, 21, 31, 41])
>>> b[1:3, : ]           # each column in the second and third row of b
array([[10, 11, 12, 13],
    [20, 21, 22, 23]])
When fewer indices are provided than the number of axes, the missing indices are considered complete slices:

>>>
>>> b[-1]                 # the last row. Equivalent to b[-1,:]
array([40, 41, 42, 43])

…符号表示将所有未指定索引的维度均赋为 : ,:在python中表示该维所有元素:

>>> c = np.array( [[[ 0, 1, 2],        # a 3D array (two stacked 2D arrays)
...         [ 10, 12, 13]],
...        [[100,101,102],
...         [110,112,113]]])
>>> c.shape
(2, 2, 3)
>>> c[1,...]                  # same as c[1,:,:] or c[1]
array([[100, 101, 102],
    [110, 112, 113]])
>>> c[...,2]                  # same as c[:,:,2]
array([[ 2, 13],
    [102, 113]])

遍历:

如果只想遍历整个array可以直接使用:

>>> for row in b:
...   print(row)
...
[0 1 2 3]
[10 11 12 13]
[20 21 22 23]
[30 31 32 33]
[40 41 42 43]

但是如果要对每个元素进行操作,就要使用flat属性,这是一个遍历整个数组的迭代器

>>> for element in b.flat:
...   print(element)
...

总结

以上所述是小编给大家介绍的Python Numpy 数组的初始化和基本操作,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对脚本之家网站的支持!

更多精彩内容其他人还在看

Python实现按学生年龄排序的实际问题详解

这篇文章主要给大家介绍了关于Python实现按学生年龄排序实际问题的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面跟着小编来一起学习学习吧。
收藏 0 赞 0 分享

Python开发的HTTP库requests详解

Requests是用Python语言编写,基于urllib,采用Apache2 Licensed开源协议的HTTP库。它比urllib更加方便,可以节约我们大量的工作,完全满足HTTP测试需求。Requests的哲学是以PEP 20 的习语为中心开发的,所以它比urllib更加P
收藏 0 赞 0 分享

Python网络爬虫与信息提取(实例讲解)

下面小编就为大家带来一篇Python网络爬虫与信息提取(实例讲解)。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

在python3环境下的Django中使用MySQL数据库的实例

下面小编就为大家带来一篇在python3环境下的Django中使用MySQL数据库的实例。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python 3.x读写csv文件中数字的方法示例

在我们日常开发中经常需要对csv文件进行读写,下面这篇文章主要给大家介绍了关于Python 3.x读写csv文件中数字的相关资料,文中通过示例代码介绍的非常详细,对大家具有一定的参考学习价值,需要的朋友们下面跟着小编来一起学习学习吧。
收藏 0 赞 0 分享

Python实现解析Bit Torrent种子文件内容的方法

这篇文章主要介绍了Python实现解析Bit Torrent种子文件内容的方法,结合实例形式分析了Python针对Torrent文件的读取与解析相关操作技巧与注意事项,需要的朋友可以参考下
收藏 0 赞 0 分享

Python实现文件内容批量追加的方法示例

这篇文章主要介绍了Python实现文件内容批量追加的方法,结合实例形式分析了Python文件的读写相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

Python简单实现自动删除目录下空文件夹的方法

这篇文章主要介绍了Python简单实现自动删除目录下空文件夹的方法,涉及Python针对文件与目录的读取、判断、删除等相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

简单学习Python多进程Multiprocessing

这篇文章主要和大家一起简单的学习Python多进程Multiprocessing ,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
收藏 0 赞 0 分享

Python导入模块时遇到的错误分析

这篇文章主要给大家详细解释了在Python处理导入模块的时候出现错误以及具体的情况分析,非常的详尽,有需要的小伙伴可以参考下
收藏 0 赞 0 分享
查看更多