TensorFlow saver指定变量的存取

所属分类: 脚本专栏 / python 阅读数: 1720
收藏 0 赞 0 分享

今天和大家分享一下用TensorFlow的saver存取训练好的模型那点事。

1. 用saver存取变量;
2. 用saver存取指定变量。

用saver存取变量。

话不多说,先上代码

# coding=utf-8
import os        
import tensorflow as tf
import numpy
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' #有些指令集没有装,加这个不显示那些警告
w = tf.Variable([[1,2,3],[2,3,4],[6,7,8]],dtype=tf.float32)
b = tf.Variable([[4,5,6]],dtype=tf.float32,)
s = tf.Variable([[2, 5],[5, 6]], dtype=tf.float32)
init = tf.global_variables_initializer()
saver =tf.train.Saver()
with tf.Session() as sess:
 sess.run(init)
 save_path = saver.save(sess, "save_net.ckpt")#路径可以自己定
 print("save to path:",save_path)

这里我随便定义了几个变量然后进行存操作,运行后,变量w,b,s会被保存下来。保存会生成如下几个文件:

  • cheakpoint
  • save_net.ckpt.data-*
  • save_net.ckpt.index
  • save_net.ckpt.meta

接下来是读取的代码

import tensorflow as tf
import os
import numpy as np
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

w = tf.Variable(np.arange(9).reshape((3,3)),dtype=tf.float32)
b = tf.Variable(np.arange(3).reshape((1,3)),dtype=tf.float32)
a = tf.Variable(np.arange(4).reshape((2,2)),dtype=tf.float32)
saver =tf.train.Saver()
with tf.Session() as sess:

 saver.restore(sess,'save_net.ckpt')
 print ("weights",sess.run(w))
 print ("b",sess.run(b))
 print ("s",sess.run(a))

在写读取代码时要注意变量定义的类型、大小和变量的数量以及顺序等要与存的时候一致,不然会报错。你存的时候顺序是w,b,s,取的时候同样这个顺序。存的时候w定义了dtype没有 定义name,取的时候同样要这样,因为TensorFlow存取是按照键值对来存取的,所以必须一致。这里变量名,也就是w,s之类可以不同。

如下是我成功读取的效果

用saver存取指定变量。

在我们做训练时候,有些变量是没有必要保存的,但是如果直接用tf.train.Saver()。程序会将所有的变量保存下来,这时候我们可以指定保存,只保存我们需要的变量,其他的统统丢掉。
其实很简单,只需要在上面代码基础上稍加修改,只需把tf.train.Saver()替换成如下代码

program = []
program += [w,b]
tf.train.Saver(program)

这样,程序就只会存w和b了。同样,读取程序里面的tf.train.Saver()也要做如上修改。dtype,name之类依旧必须一致。

最后附上最终代码:

# coding=utf-8
# saver保存变量测试
import os        
import tensorflow as tf
import numpy
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' #有些指令集没有装,加这个不显示那些警告
w = tf.Variable([[1,2,3],[2,3,4],[6,7,8]],dtype=tf.float32)
b = tf.Variable([[4,5,6]],dtype=tf.float32,)
s = tf.Variable([[2, 5],[5, 6]], dtype=tf.float32)
init = tf.global_variables_initializer()
program = []
program += [w, b]
saver =tf.train.Saver(program)
with tf.Session() as sess:
 sess.run(init)
 save_path = saver.save(sess, "save_net.ckpt")#路径可以自己定
 print("save to path:",save_path)


#saver提取变量测试
import tensorflow as tf
import os
import numpy as np
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

w = tf.Variable(np.arange(9).reshape((3,3)),dtype=tf.float32)
b = tf.Variable(np.arange(3).reshape((1,3)),dtype=tf.float32)
a = tf.Variable(np.arange(4).reshape((2,2)),dtype=tf.float32)
program = []
program +=[w,b]
saver =tf.train.Saver(program)
with tf.Session() as sess:

 saver.restore(sess,'save_net.ckpt')
 print ("weights",sess.run(w))
 print ("b",sess.run(b))
 #print ("s",sess.run(a))

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

更多精彩内容其他人还在看

Python实现按学生年龄排序的实际问题详解

这篇文章主要给大家介绍了关于Python实现按学生年龄排序实际问题的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面跟着小编来一起学习学习吧。
收藏 0 赞 0 分享

Python开发的HTTP库requests详解

Requests是用Python语言编写,基于urllib,采用Apache2 Licensed开源协议的HTTP库。它比urllib更加方便,可以节约我们大量的工作,完全满足HTTP测试需求。Requests的哲学是以PEP 20 的习语为中心开发的,所以它比urllib更加P
收藏 0 赞 0 分享

Python网络爬虫与信息提取(实例讲解)

下面小编就为大家带来一篇Python网络爬虫与信息提取(实例讲解)。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

在python3环境下的Django中使用MySQL数据库的实例

下面小编就为大家带来一篇在python3环境下的Django中使用MySQL数据库的实例。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python 3.x读写csv文件中数字的方法示例

在我们日常开发中经常需要对csv文件进行读写,下面这篇文章主要给大家介绍了关于Python 3.x读写csv文件中数字的相关资料,文中通过示例代码介绍的非常详细,对大家具有一定的参考学习价值,需要的朋友们下面跟着小编来一起学习学习吧。
收藏 0 赞 0 分享

Python实现解析Bit Torrent种子文件内容的方法

这篇文章主要介绍了Python实现解析Bit Torrent种子文件内容的方法,结合实例形式分析了Python针对Torrent文件的读取与解析相关操作技巧与注意事项,需要的朋友可以参考下
收藏 0 赞 0 分享

Python实现文件内容批量追加的方法示例

这篇文章主要介绍了Python实现文件内容批量追加的方法,结合实例形式分析了Python文件的读写相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

Python简单实现自动删除目录下空文件夹的方法

这篇文章主要介绍了Python简单实现自动删除目录下空文件夹的方法,涉及Python针对文件与目录的读取、判断、删除等相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

简单学习Python多进程Multiprocessing

这篇文章主要和大家一起简单的学习Python多进程Multiprocessing ,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
收藏 0 赞 0 分享

Python导入模块时遇到的错误分析

这篇文章主要给大家详细解释了在Python处理导入模块的时候出现错误以及具体的情况分析,非常的详尽,有需要的小伙伴可以参考下
收藏 0 赞 0 分享
查看更多