Python+OpenCV让电脑帮你玩微信跳一跳

所属分类: 脚本专栏 / python 阅读数: 896
收藏 0 赞 0 分享

前言

最近微信小游戏跳一跳大热,自己也是中毒颇久,无奈手残最高分只拿到200分。无意间看到教你用Python来玩微信跳一跳一文,在电脑上利用adb驱动工具操作手机,详细的介绍以及如何安装adb驱动可以去看这篇文章,这里就不再介绍了。但是原文每次跳跃需要手动点击,于是想尝试利用图像处理的方法自动化。
最重要的不是最终刷的分数,而是解决这个问题的过程。花了一个下午尝试各种方法,最终采用opencv的模板匹配+边缘检测,方法很简单但效果很好。
本文主要分享如何用Opencv对游戏截图进行检测,自动找到小人和跳跃目标点的位置,计算跳跃距离,从而让电脑帮你玩跳一跳游戏!

本文的代码见https://github.com/moneyDboat/wechat_jump_jump,欢迎fork和star~

主要使用的Python库及对应版本:

python 3.6
opencv-python 3.3.0
numpy 1.13.3

Opencv

首先介绍下opencv,是一个计算机视觉库,本文将用到opencv里的模板匹配和边缘检测功能。

模板匹配

模板匹配是在一幅图像中寻找一个特定目标的方法之一。这种方法的原理非常简单,遍历图像中的每一个可能的位置,比较各处与模板是否“相似”,当相似度足够高时,就认为找到了我们的目标。
例如提供小人的模板图片

import cv2
import numpy as np

# imread()函数读取目标图片和模板
img_rgb = cv2.imread("0.png", 0)
template = cv2.imread('temp1.jpg', 0)

# matchTemplate 函数:在模板和输入图像之间寻找匹配,获得匹配结果图像 
# minMaxLoc 函数:在给定的矩阵中寻找最大和最小值,并给出它们的位置
res = cv2.matchTemplate(img_rgb,template,cv2.TM_CCOEFF_NORMED)
min_val,max_val,min_loc,max_loc = cv2.minMaxLoc(res)


使用OpenCV的matchTemplate函数,就能找到中小人的位置。小人的检测效果非常好,每次都能识别得很精确。

观察到小人跳到物块中心之后,下一个物块中心就会出现白色小圆点,同样可以匹配图中白色小圆点,从而获得跳跃目标点的坐标,计算跳跃的距离。

但是只匹配小圆点获得跳跃目标位置会出现问题,因为有些物块本身就是白色的,导致检测失败,所以我们在检测失败(模板匹配的相似度很低)的情况下采用边缘检测。

边缘检测

边缘检测顾名思义就是检测图片中的边缘,使用opencv中的cv2.Canny函数。
跳一跳的画面很简洁,所以边缘检测的效果很好。检测出边缘后,从上至下扫描图片就能找到下一个物块的大致位置。

img = cv2.imread('1.png', 0)

# 先做高斯模糊能够提高边缘检测的效果
img = cv2.GaussianBlur(img,(5,5),0) 
canny = cv2.Canny(img, 1, 10) 


总结

以上就是用OpenCV让电脑帮你玩跳一跳的整体思路,还有很多细节之后再补充,具体的流程见https://github.com/moneyDboat/wechat_jump_jump中的play.py文件,我已经尽力将代码注释写得详尽。
电脑上安装好adb驱动和相关的Python库,手机通过数据线连接电脑,运行play.py,接下来你就可以刷刷剧吃吃零食,然后让电脑帮你刷分啦~

这是我自己的结果截图,自动刷到1000分以上是没有问题的。

还有很多不完善的地方,例如屏幕分辨率适配等,如果有什么更好的想法和建议,欢迎评论共同探讨~~

更多内容大家可以参考专题《微信跳一跳》进行学习。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

更多精彩内容其他人还在看

Python实现按学生年龄排序的实际问题详解

这篇文章主要给大家介绍了关于Python实现按学生年龄排序实际问题的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面跟着小编来一起学习学习吧。
收藏 0 赞 0 分享

Python开发的HTTP库requests详解

Requests是用Python语言编写,基于urllib,采用Apache2 Licensed开源协议的HTTP库。它比urllib更加方便,可以节约我们大量的工作,完全满足HTTP测试需求。Requests的哲学是以PEP 20 的习语为中心开发的,所以它比urllib更加P
收藏 0 赞 0 分享

Python网络爬虫与信息提取(实例讲解)

下面小编就为大家带来一篇Python网络爬虫与信息提取(实例讲解)。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

在python3环境下的Django中使用MySQL数据库的实例

下面小编就为大家带来一篇在python3环境下的Django中使用MySQL数据库的实例。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python 3.x读写csv文件中数字的方法示例

在我们日常开发中经常需要对csv文件进行读写,下面这篇文章主要给大家介绍了关于Python 3.x读写csv文件中数字的相关资料,文中通过示例代码介绍的非常详细,对大家具有一定的参考学习价值,需要的朋友们下面跟着小编来一起学习学习吧。
收藏 0 赞 0 分享

Python实现解析Bit Torrent种子文件内容的方法

这篇文章主要介绍了Python实现解析Bit Torrent种子文件内容的方法,结合实例形式分析了Python针对Torrent文件的读取与解析相关操作技巧与注意事项,需要的朋友可以参考下
收藏 0 赞 0 分享

Python实现文件内容批量追加的方法示例

这篇文章主要介绍了Python实现文件内容批量追加的方法,结合实例形式分析了Python文件的读写相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

Python简单实现自动删除目录下空文件夹的方法

这篇文章主要介绍了Python简单实现自动删除目录下空文件夹的方法,涉及Python针对文件与目录的读取、判断、删除等相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

简单学习Python多进程Multiprocessing

这篇文章主要和大家一起简单的学习Python多进程Multiprocessing ,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
收藏 0 赞 0 分享

Python导入模块时遇到的错误分析

这篇文章主要给大家详细解释了在Python处理导入模块的时候出现错误以及具体的情况分析,非常的详尽,有需要的小伙伴可以参考下
收藏 0 赞 0 分享
查看更多