python读取与写入csv格式文件的示例代码

所属分类: 脚本专栏 / python 阅读数: 702
收藏 0 赞 0 分享

在数据分析中经常需要从csv格式的文件中存取数据以及将数据写书到csv文件中。将csv文件中的数据直接读取为 dict 类型和 DataFrame 是非常方便也很省事的一种做法,以下代码以鸢尾花数据为例。

csv文件读取为dict

代码

 # -*- coding: utf-8 -*-
import csv
with open('E:/iris.csv') as csvfile:
reader = csv.DictReader(csvfile, fieldnames=None) # fieldnames默认为None,如果所读csv文件没有表头,则需要指定
list_1 = [e for e in reader] # 每行数据作为一个dict存入链表中
csvfile.close()
print list_1[0]

输出

 {'Petal.Length': '1.4', 'Sepal.Length': '5.1', 'Petal.Width': '0.2', 'Sepal.Width': '3.5', 'Species': 'setosa'}

如果读入的每条数据需要单独处理且数据量较大,推荐逐条处理然后再放入。

 list_1 = list()
for e in reader:
 list_1.append(your_func(e)) # your_func为每条数据的处理函数 

多条类型为dict的数据写入csv文件

代码

 # 数据
data = [
{'Petal.Length': '1.4', 'Sepal.Length': '5.1', 'Petal.Width': '0.2', 'Sepal.Width': '3.5', 'Species': 'setosa'},
{'Petal.Length': '1.4', 'Sepal.Length': '4.9', 'Petal.Width': '0.2', 'Sepal.Width': '3', 'Species': 'setosa'},
{'Petal.Length': '1.3', 'Sepal.Length': '4.7', 'Petal.Width': '0.2', 'Sepal.Width': '3.2', 'Species': 'setosa'},
{'Petal.Length': '1.5', 'Sepal.Length': '4.6', 'Petal.Width': '0.2', 'Sepal.Width': '3.1', 'Species': 'setosa'}
]
# 表头
header = ['Petal.Length', 'Sepal.Length', 'Petal.Width', 'Sepal.Width', 'Species']
print len(data)
with open('E:/dst.csv', 'wb') as dstfile: #写入方式选择wb,否则有空行
 writer = csv.DictWriter(dstfile, fieldnames=header)
 writer.writeheader() # 写入表头
 writer.writerows(data) # 批量写入
dstfile.close()

上述代码将数据整体写入csv文件,如果数据量较多且想实时查看写入了多少数据可以使用 writerows 函数。

读取csv文件为DataFrame

代码

 # 读取csv文件为DataFrame
import pandas as pd
dframe = pd.DataFrame.from_csv('E:/iris.csv')

也可以稍微曲折点:

import csv
import pandas as pd
with open('E:/iris.csv') as csvfile:
 reader = csv.DictReader(csvfile, fieldnames=None) # fieldnames默认为None,如果所读csv文件没有表头,则需要指定
 list_1 = [e for e in reader] # 每行数据作为一个dict存入链表中
csvfile.close()
dfrme = pd.DataFrame.from_records(list_1) 

从zip文件中读取指定csv文件为DataFrame

dst.zip文件中包含有dst.csv和其它文件,现在在不解压缩的情况下直接读取dst.csv文件为DataFrame.

import pandas as pd
import zipfile
z_file = zipfile.ZipFile('E:/dst.zip')
dframe = pd.read_csv(z_file.open('dst.csv'))
z_file.close()
print dframe 

DataFrame写入csv文件

dfrme.to_csv('E:/dst.csv', index=False) # 不要每行的编号 

读取txt文件为DataFrame

import pandas as pd
# `path`为文件路径或文件句柄,`header`文件第一行是否是表头,`delimiter`每个字段的分隔符,`dtype`数据读入后的存储类型。
frame = pd.read_table(path, header=None, index_col=False, delimiter='\t', dtype=str)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

更多精彩内容其他人还在看

Python实现按学生年龄排序的实际问题详解

这篇文章主要给大家介绍了关于Python实现按学生年龄排序实际问题的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面跟着小编来一起学习学习吧。
收藏 0 赞 0 分享

Python开发的HTTP库requests详解

Requests是用Python语言编写,基于urllib,采用Apache2 Licensed开源协议的HTTP库。它比urllib更加方便,可以节约我们大量的工作,完全满足HTTP测试需求。Requests的哲学是以PEP 20 的习语为中心开发的,所以它比urllib更加P
收藏 0 赞 0 分享

Python网络爬虫与信息提取(实例讲解)

下面小编就为大家带来一篇Python网络爬虫与信息提取(实例讲解)。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

在python3环境下的Django中使用MySQL数据库的实例

下面小编就为大家带来一篇在python3环境下的Django中使用MySQL数据库的实例。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python 3.x读写csv文件中数字的方法示例

在我们日常开发中经常需要对csv文件进行读写,下面这篇文章主要给大家介绍了关于Python 3.x读写csv文件中数字的相关资料,文中通过示例代码介绍的非常详细,对大家具有一定的参考学习价值,需要的朋友们下面跟着小编来一起学习学习吧。
收藏 0 赞 0 分享

Python实现解析Bit Torrent种子文件内容的方法

这篇文章主要介绍了Python实现解析Bit Torrent种子文件内容的方法,结合实例形式分析了Python针对Torrent文件的读取与解析相关操作技巧与注意事项,需要的朋友可以参考下
收藏 0 赞 0 分享

Python实现文件内容批量追加的方法示例

这篇文章主要介绍了Python实现文件内容批量追加的方法,结合实例形式分析了Python文件的读写相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

Python简单实现自动删除目录下空文件夹的方法

这篇文章主要介绍了Python简单实现自动删除目录下空文件夹的方法,涉及Python针对文件与目录的读取、判断、删除等相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

简单学习Python多进程Multiprocessing

这篇文章主要和大家一起简单的学习Python多进程Multiprocessing ,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
收藏 0 赞 0 分享

Python导入模块时遇到的错误分析

这篇文章主要给大家详细解释了在Python处理导入模块的时候出现错误以及具体的情况分析,非常的详尽,有需要的小伙伴可以参考下
收藏 0 赞 0 分享
查看更多