Python编程实现二分法和牛顿迭代法求平方根代码

所属分类: 脚本专栏 / python 阅读数: 1045
收藏 0 赞 0 分享

求一个数的平方根函数sqrt(int num) ,在大多数语言中都提供实现。那么要求一个数的平方根,是怎么实现的呢?
实际上求平方根的算法方法主要有两种:二分法(binary search)和牛顿迭代法(Newton iteration)

1:二分法

求根号5

a:折半: 5/2=2.5
b:平方校验: 2.5*2.5=6.25>5,并且得到当前上限2.5
c:再次向下折半:2.5/2=1.25
d:平方校验:1.25*1.25=1.5625<5,得到当前下限1.25
e:再次折半:2.5-(2.5-1.25)/2=1.875
f:平方校验:1.875*1.875=3.515625<5,得到当前下限1.875

每次得到当前值和5进行比较,并且记下下下限和上限,依次迭代,逐渐逼近平方根:

import math 
from math import sqrt 
 
def sqrt_binary(num): 
  x=sqrt(num) 
  y=num/2.0 
  low=0.0 
  up=num*1.0 
  count=1 
  while abs(y-x)>0.00000001: 
    print count,y 
    count+=1     
    if (y*y>num): 
      up=y 
      y=low+(y-low)/2 
    else: 
      low=y 
      y=up-(up-y)/2 
  return y 
 
print(sqrt_binary(5)) 
print(sqrt(5)) 

运行结果:
1 2.5
2 1.25
3 1.875
4 2.1875
5 2.34375
6 2.265625
7 2.2265625
8 2.24609375
9 2.236328125
10 2.2314453125
11 2.23388671875
12 2.23510742188
13 2.23571777344
14 2.23602294922
15 2.23617553711
16 2.23609924316
17 2.23606109619
18 2.23608016968
19 2.23607063293
20 2.23606586456
21 2.23606824875
22 2.23606705666
23 2.2360676527
24 2.23606795073
25 2.23606809974
26 2.23606802523
27 2.23606798798
2.23606796935
2.2360679775
[Finished in 0.1s]

经过27次二分法迭代,得到的值和系统sqrt()差别在0.00000001,精度在亿分之一,

0.001需要迭代8次

因此,在对精度要求不高的情况下,二分法也算比较高效的算法。

2:牛顿迭代

仔细思考一下就能发现,我们需要解决的问题可以简单化理解。

从函数意义上理解:我们是要求函数f(x)=x²,使f(x)=num的近似解,即x²-num=0的近似解。

从几何意义上理解:我们是要求抛物线g(x)=x²-num与x轴交点(g(x)=0)最接近的点。

我们假设g(x0)=0,即x0是正解,那么我们要做的就是让近似解x不断逼近x0,这是函数导数的定义:

可以由此得到

从几何图形上看,因为导数是切线,通过不断迭代,导数与x轴的交点会不断逼近x0。

对于一般情况:

将m=2代入:

def sqrt_newton(num): 
  x=sqrt(num) 
  y=num/2.0 
  count=1 
  while abs(y-x)>0.00000001: 
    print count,y 
    count+=1 
    y=((y*1.0)+(1.0*num)/y)/2.0000 
  return y 
 
print(sqrt_newton(5)) 
print(sqrt(5)) 

运行结果:
1 2.5
2 2.25
3 2.23611111111
2.23606797792
2.2360679775

精确到亿分之一,牛顿法只迭代了3次,是二分法的十倍

3:利用牛顿法求开立方

def cube_newton(num): 
  x=num/3.0 
  y=0 
  count=1 
  while abs(x-y)>0.00000001: 
    print count,x 
    count+=1 
    y=x 
    x=(2.0/3.0)*x+(num*1.0)/(x*x*3.0) 
  return x 
 
print(cube_newton(27))  

微积分、概率、线代是高级算法的基础课。可是,这么多年,已经忘得差不多了..............................

总结

以上就是本文关于Python编程实现二分法和牛顿迭代法求平方根代码的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题,如有不足之处,欢迎留言指出。

更多精彩内容其他人还在看

QML用PathView实现轮播图

这篇文章主要为大家详细介绍了QML用PathView实现轮播图,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
收藏 0 赞 0 分享

Opencv图像处理:如何判断图片里某个颜色值占的比例

这篇文章主要介绍了Opencv图像处理:如何判断图片里某个颜色值占的比例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

python golang中grpc 使用示例代码详解

这篇文章主要介绍了python golang中grpc 使用,本文通过示例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
收藏 0 赞 0 分享

浅谈python opencv对图像颜色通道进行加减操作溢出

这篇文章主要介绍了浅谈python opencv对图像颜色通道进行加减操作溢出,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

解决python运行启动报错问题

这篇文章主要介绍了解决python运行启动报错问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python常见反爬虫机制解决方案

这篇文章主要介绍了Python常见反爬虫机制解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
收藏 0 赞 0 分享

解决pycharm导入本地py文件时,模块下方出现红色波浪线的问题

这篇文章主要介绍了解决pycharm导入本地py文件时,模块下方出现红色波浪线的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

pycharm设置默认的UTF-8编码模式的方法详解

这篇文章主要介绍了pycharm设置默认的UTF-8编码模式,本文通过图文并茂的形式给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
收藏 0 赞 0 分享

浅谈Pycharm的项目文件名是红色的原因及解决方式

这篇文章主要介绍了浅谈Pycharm的项目文件名是红色的原因及解决方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python网络爬虫四大选择器用法原理总结

这篇文章主要介绍了Python网络爬虫四大选择器用法原理总结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
收藏 0 赞 0 分享
查看更多