python编程线性回归代码示例

所属分类: 脚本专栏 / python 阅读数: 1224
收藏 0 赞 0 分享

 用python进行线性回归分析非常方便,有现成的库可以使用比如:numpy.linalog.lstsq例子、scipy.stats.linregress例子、pandas.ols例子等。

不过本文使用sklearn库的linear_model.LinearRegression,支持任意维度,非常好用。

一、二维直线的例子

预备知识:线性方程y=a∗x+b。y=a∗x+b表示平面一直线

下面的例子中,我们根据房屋面积、房屋价格的历史数据,建立线性回归模型。

然后,根据给出的房屋面积,来预测房屋价格。这里是数据来源

import pandas as pd 
from io import StringIO  
from sklearn import linear_model  
import matplotlib.pyplot as plt 
# 房屋面积与价格历史数据(csv文件) 
csv_data = 'square_feet,price\n150,6450\n200,7450\n250,8450\n300,9450\n350,11450\n400,15450\n600,18450\n' 
 
# 读入dataframe 
df = pd.read_csv(StringIO(csv_data)) 
print(df)  
# 建立线性回归模型 
regr = linear_model.LinearRegression()  
# 拟合 
regr.fit(df['square_feet'].reshape(-1, 1), df['price']) # 注意此处.reshape(-1, 1),因为X是一维的! 
# 不难得到直线的斜率、截距 
a, b = regr.coef_, regr.intercept_ 
 
# 给出待预测面积 
area = 238.5 
 
# 方式1:根据直线方程计算的价格 
print(a * area + b) 
# 方式2:根据predict方法预测的价格 
print(regr.predict(area))  
# 画图 
# 1.真实的点 
plt.scatter(df['square_feet'], df['price'], color='blue')  
# 2.拟合的直线 
plt.plot(df['square_feet'], regr.predict(df['square_feet'].reshape(-1,1)), color='red', linewidth=4) 
 
plt.show() 

二、三维平面的例子

预备知识:线性方程z=a∗x+b∗y+c。z=a∗x+b∗y+c 表示空间一平面

由于找不到真实数据,只好自己虚拟一组数据。

import numpy as np  
from sklearn import linear_model  
from mpl_toolkits.mplot3d import Axes3D 
import matplotlib.pyplot as plt  
xx, yy = np.meshgrid(np.linspace(0,10,10), np.linspace(0,100,10)) 
zz = 1.0 * xx + 3.5 * yy + np.random.randint(0,100,(10,10))  
# 构建成特征、值的形式 
X, Z = np.column_stack((xx.flatten(),yy.flatten())), zz.flatten() 
 
# 建立线性回归模型 
regr = linear_model.LinearRegression() 
 
# 拟合 
regr.fit(X, Z) 
# 不难得到平面的系数、截距 
a, b = regr.coef_, regr.intercept_  
# 给出待预测的一个特征 
x = np.array([[5.8, 78.3]])  
# 方式1:根据线性方程计算待预测的特征x对应的值z(注意:np.sum) 
print(np.sum(a * x) + b)  
# 方式2:根据predict方法预测的值z 
print(regr.predict(x))  
# 画图 
fig = plt.figure() 
ax = fig.gca(projection='3d')  
# 1.画出真实的点 
ax.scatter(xx, yy, zz) 
# 2.画出拟合的平面 
ax.plot_wireframe(xx, yy, regr.predict(X).reshape(10,10)) 
ax.plot_surface(xx, yy, regr.predict(X).reshape(10,10), alpha=0.3) 

plt.show() 

效果图

总结

以上就是本文关于python编程线性回归代码示例的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站:

python八大排序算法速度实例对比

详解K-means算法在Python中的实现

Python算法之图的遍历

如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

更多精彩内容其他人还在看

Python实现按学生年龄排序的实际问题详解

这篇文章主要给大家介绍了关于Python实现按学生年龄排序实际问题的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面跟着小编来一起学习学习吧。
收藏 0 赞 0 分享

Python开发的HTTP库requests详解

Requests是用Python语言编写,基于urllib,采用Apache2 Licensed开源协议的HTTP库。它比urllib更加方便,可以节约我们大量的工作,完全满足HTTP测试需求。Requests的哲学是以PEP 20 的习语为中心开发的,所以它比urllib更加P
收藏 0 赞 0 分享

Python网络爬虫与信息提取(实例讲解)

下面小编就为大家带来一篇Python网络爬虫与信息提取(实例讲解)。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

在python3环境下的Django中使用MySQL数据库的实例

下面小编就为大家带来一篇在python3环境下的Django中使用MySQL数据库的实例。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python 3.x读写csv文件中数字的方法示例

在我们日常开发中经常需要对csv文件进行读写,下面这篇文章主要给大家介绍了关于Python 3.x读写csv文件中数字的相关资料,文中通过示例代码介绍的非常详细,对大家具有一定的参考学习价值,需要的朋友们下面跟着小编来一起学习学习吧。
收藏 0 赞 0 分享

Python实现解析Bit Torrent种子文件内容的方法

这篇文章主要介绍了Python实现解析Bit Torrent种子文件内容的方法,结合实例形式分析了Python针对Torrent文件的读取与解析相关操作技巧与注意事项,需要的朋友可以参考下
收藏 0 赞 0 分享

Python实现文件内容批量追加的方法示例

这篇文章主要介绍了Python实现文件内容批量追加的方法,结合实例形式分析了Python文件的读写相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

Python简单实现自动删除目录下空文件夹的方法

这篇文章主要介绍了Python简单实现自动删除目录下空文件夹的方法,涉及Python针对文件与目录的读取、判断、删除等相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

简单学习Python多进程Multiprocessing

这篇文章主要和大家一起简单的学习Python多进程Multiprocessing ,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
收藏 0 赞 0 分享

Python导入模块时遇到的错误分析

这篇文章主要给大家详细解释了在Python处理导入模块的时候出现错误以及具体的情况分析,非常的详尽,有需要的小伙伴可以参考下
收藏 0 赞 0 分享
查看更多