python+mongodb数据抓取详细介绍

所属分类: 脚本专栏 / python 阅读数: 1192
收藏 0 赞 0 分享

分享点干货!!!

Python数据抓取分析

编程模块:requests,lxml,pymongo,time,BeautifulSoup

首先获取所有产品的分类网址:

def step():
  try:
    headers = {
      。。。。。
      }
    r = requests.get(url,headers,timeout=30)
    html = r.content
    soup = BeautifulSoup(html,"lxml")
    url = soup.find_all(正则表达式)
    for i in url:
      url2 = i.find_all('a')
      for j in url2:
         step1url =url + j['href']
         print step1url
         step2(step1url)
  except Exception,e:
    print e

我们在产品分类的同时需要确定我们所访问的地址是产品还是又一个分类的产品地址(所以需要判断我们访问的地址是否含有if判断标志):

def step2(step1url):
  try:
    headers = {
      。。。。
      }
    r = requests.get(step1url,headers,timeout=30)
    html = r.content
    soup = BeautifulSoup(html,"lxml")
    a = soup.find('div',id='divTbl')
    if a:
      url = soup.find_all('td',class_='S-ITabs')
      for i in url:
        classifyurl = i.find_all('a')
        for j in classifyurl:
           step2url = url + j['href']
           #print step2url
           step3(step2url)
    else:
      postdata(step1url)

当我们if判断后为真则将第二页的分类网址获取到(第一个步骤),否则执行postdata函数,将网页产品地址抓取!

def producturl(url):
  try:
    p1url = doc.xpath(正则表达式)
    for i in xrange(1,len(p1url) + 1):
      p2url = doc.xpath(正则表达式)
      if len(p2url) > 0:
        producturl = url + p2url[0].get('href')
        count = db[table].find({'url':producturl}).count()
        if count <= 0:
            sn = getNewsn()
            db[table].insert({"sn":sn,"url":producturl})
            print str(sn) + 'inserted successfully'
        else:
            'url exist'

  except Exception,e:
    print e

其中为我们所获取到的产品地址并存入mongodb中,sn作为地址的新id。

下面我们需要在mongodb中通过新id索引来获取我们的网址并进行访问,对产品进行数据分析并抓取,将数据更新进数据库内!

其中用到最多的BeautifulSoup这个模块,但是对于存在于js的价值数据使用BeautifulSoup就用起来很吃力,所以对于js中的数据我推荐使用xpath,但是解析网页就需要用到HTML.document_fromstring(url)方法来解析网页。

对于xpath抓取价值数据的同时一定要细心!如果想了解xpath就在下面留言,我会尽快回答!

def parser(sn,url):
  try:
    headers = {
      。。。。。。
      }
    r = requests.get(url, headers=headers,timeout=30)
    html = r.content
    soup = BeautifulSoup(html,"lxml")
    dt = {}
    #partno
    a = soup.find("meta",itemprop="mpn")
    if a:
      dt['partno'] = a['content']
    #manufacturer
    b = soup.find("meta",itemprop="manufacturer")
    if b:
      dt['manufacturer'] = b['content']
    #description
    c = soup.find("span",itemprop="description")
    if c:
      dt['description'] = c.get_text().strip()
    #price
    price = soup.find("table",class_="table table-condensed occalc_pa_table")
    if price:
      cost = {}
      for i in price.find_all('tr'):
        if len(i) > 1:
          td = i.find_all('td')
          key=td[0].get_text().strip().replace(',','')
          val=td[1].get_text().replace(u'\u20ac','').strip()
          if key and val:
            cost[key] = val
      if cost:
        dt['cost'] = cost
        dt['currency'] = 'EUR'
    #quantity
    d = soup.find("input",id="ItemQuantity")
    if d:
      dt['quantity'] = d['value']
    #specs
    e = soup.find("div",class_="row parameter-container")
    if e:
      key1 = []
      val1= []
      for k in e.find_all('dt'):
        key = k.get_text().strip().strip('.')
        if key:
          key1.append(key)
      for i in e.find_all('dd'):
        val = i.get_text().strip()
        if val:
          val1.append(val)
      specs = dict(zip(key1,val1))
    if specs:
      dt['specs'] = specs
      print dt
      
    if dt:
      db[table].update({'sn':sn},{'$set':dt})
      print str(sn) + ' insert successfully'
      time.sleep(3)
    else:
      error(str(sn) + '\t' + url)
  except Exception,e:
    error(str(sn) + '\t' + url)
    print "Don't data!"

最后全部程序运行,将价值数据分析处理并存入数据库中!

以上就是本文关于python+mongodb数据抓取详细介绍的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站:Python探索之创建二叉树Python探索之修改Python搜索路径浅谈python中copy和deepcopy中的区别等,有什么问题,欢迎留言一起交流讨论。

更多精彩内容其他人还在看

Python实现按学生年龄排序的实际问题详解

这篇文章主要给大家介绍了关于Python实现按学生年龄排序实际问题的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面跟着小编来一起学习学习吧。
收藏 0 赞 0 分享

Python开发的HTTP库requests详解

Requests是用Python语言编写,基于urllib,采用Apache2 Licensed开源协议的HTTP库。它比urllib更加方便,可以节约我们大量的工作,完全满足HTTP测试需求。Requests的哲学是以PEP 20 的习语为中心开发的,所以它比urllib更加P
收藏 0 赞 0 分享

Python网络爬虫与信息提取(实例讲解)

下面小编就为大家带来一篇Python网络爬虫与信息提取(实例讲解)。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

在python3环境下的Django中使用MySQL数据库的实例

下面小编就为大家带来一篇在python3环境下的Django中使用MySQL数据库的实例。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python 3.x读写csv文件中数字的方法示例

在我们日常开发中经常需要对csv文件进行读写,下面这篇文章主要给大家介绍了关于Python 3.x读写csv文件中数字的相关资料,文中通过示例代码介绍的非常详细,对大家具有一定的参考学习价值,需要的朋友们下面跟着小编来一起学习学习吧。
收藏 0 赞 0 分享

Python实现解析Bit Torrent种子文件内容的方法

这篇文章主要介绍了Python实现解析Bit Torrent种子文件内容的方法,结合实例形式分析了Python针对Torrent文件的读取与解析相关操作技巧与注意事项,需要的朋友可以参考下
收藏 0 赞 0 分享

Python实现文件内容批量追加的方法示例

这篇文章主要介绍了Python实现文件内容批量追加的方法,结合实例形式分析了Python文件的读写相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

Python简单实现自动删除目录下空文件夹的方法

这篇文章主要介绍了Python简单实现自动删除目录下空文件夹的方法,涉及Python针对文件与目录的读取、判断、删除等相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

简单学习Python多进程Multiprocessing

这篇文章主要和大家一起简单的学习Python多进程Multiprocessing ,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
收藏 0 赞 0 分享

Python导入模块时遇到的错误分析

这篇文章主要给大家详细解释了在Python处理导入模块的时候出现错误以及具体的情况分析,非常的详尽,有需要的小伙伴可以参考下
收藏 0 赞 0 分享
查看更多