python下实现二叉堆以及堆排序的示例

所属分类: 脚本专栏 / python 阅读数: 1311
收藏 0 赞 0 分享

堆是一种特殊的树形结构, 堆中的数据存储满足一定的堆序。堆排序是一种选择排序, 其算法复杂度, 时间复杂度相对于其他的排序算法都有很大的优势。

堆分为大头堆和小头堆, 正如其名, 大头堆的第一个元素是最大的, 每个有子结点的父结点, 其数据值都比其子结点的值要大。小头堆则相反。

我大概讲解下建一个树形堆的算法过程:

找到N/2 位置的数组数据, 从这个位置开始, 找到该节点的左子结点的索引, 先比较这个结点的下的子结点, 找到最大的那个, 将最大的子结点的索引赋值给左子结点, 然后将最大的子结点和父结点进行对比, 如果比父结点大, 与父节点交换数据。当然, 我只是大概说了下实现, 在此过程中, 还需要考虑结点不存在的情况。

看下代码:

# 构建二叉堆 
def binaryHeap(arr, lenth, m): 
 temp = arr[m] # 当前结点的值 
 while(2*m+1 < lenth): 
 lchild = 2*m+1 
 if lchild != lenth - 1 and arr[lchild] < arr[lchild + 1]: 
 lchild = lchild + 1 
 if temp < arr[lchild]: 
 arr[m] = arr[lchild] 
 else: 
 break 
 m = lchild 
 arr[m] = temp 
 
 
def heapsort(arr, length): 
 i = int(len(arr)/2) 
 while(i >= 0): 
 binaryHeap(arr, len(arr), i) 
 i = i - 1 
 
 print("二叉堆的物理顺序为:") 
 print(arr) # 输出二叉堆的物理顺序 
 
 
if __name__ == '__main__': 
 arr = [2, 87, 39, 49, 34, 62, 53, 6, 44, 98] 
 
 heapsort(arr, len(arr))

堆排序过程就是依次将最后的结点与首个节点进行对比交换:

# 构建二叉堆
def binaryHeap(arr, lenth, m):
  temp = arr[m] # 当前结点的值
  while(2*m+1 < lenth):
    lchild = 2*m+1
    if lchild != lenth - 1 and arr[lchild] < arr[lchild + 1]:
      lchild = lchild + 1
    if temp < arr[lchild]:
      arr[m] = arr[lchild]
    else:
      break
    m = lchild
  arr[m] = temp


def heapsort(arr, length):
  i = int(len(arr)/2)
  while(i >= 0):
    binaryHeap(arr, len(arr), i)
    i = i - 1

  print("二叉堆的物理顺序为:")
  print(arr) # 输出二叉堆的物理顺序

  i = length-1
  while(i > 0):
    arr[i], arr[0] = arr[0], arr[i] # 变量交换
    binaryHeap(arr, i, 0)
    i = i - 1560


def pop(arr):
  first = arr.pop(0)
  return first


if __name__ == '__main__':
  arr = [2, 87, 39, 49, 34, 62, 53, 6, 44, 98]

  heapsort(arr, len(arr))

  print("堆排序后的物理顺序")
  print(arr) # 输出经过堆排序之后的物理顺序

  data = pop(arr)
  print(data)

  print(arr)

python封装了一个堆模块, 我们使用该模块可以很高效的实现一个优先队列

import heapq


class Item:
  def __init__(self, name):
    self.name = name

  def __repr__(self):
    return 'Item({!r})'.format(self.name)


class PriorityQueue:
  def __init__(self):
    self._queue = []
    self._index = 0

  def push(self, item, priority):
    heapq.heappush(self._queue, (-priority, self._index, item)) # 存入一个三元组
    self._index += 1

  def pop(self):
    return heapq.heappop(self._queue)[-1] # 逆序输出


if __name__ == '__main__':
  p = PriorityQueue()
  p.push(Item('foo'), 1)
  p.push(Item('bar'), 5)
  p.push(Item('spam'), 4)
  p.push(Item('grok'), 1)

  print(p.pop())
  print(p.pop())

具体请看heapq官网

以上这篇python下实现二叉堆以及堆排序的示例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

更多精彩内容其他人还在看

Python实现按学生年龄排序的实际问题详解

这篇文章主要给大家介绍了关于Python实现按学生年龄排序实际问题的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面跟着小编来一起学习学习吧。
收藏 0 赞 0 分享

Python开发的HTTP库requests详解

Requests是用Python语言编写,基于urllib,采用Apache2 Licensed开源协议的HTTP库。它比urllib更加方便,可以节约我们大量的工作,完全满足HTTP测试需求。Requests的哲学是以PEP 20 的习语为中心开发的,所以它比urllib更加P
收藏 0 赞 0 分享

Python网络爬虫与信息提取(实例讲解)

下面小编就为大家带来一篇Python网络爬虫与信息提取(实例讲解)。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

在python3环境下的Django中使用MySQL数据库的实例

下面小编就为大家带来一篇在python3环境下的Django中使用MySQL数据库的实例。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python 3.x读写csv文件中数字的方法示例

在我们日常开发中经常需要对csv文件进行读写,下面这篇文章主要给大家介绍了关于Python 3.x读写csv文件中数字的相关资料,文中通过示例代码介绍的非常详细,对大家具有一定的参考学习价值,需要的朋友们下面跟着小编来一起学习学习吧。
收藏 0 赞 0 分享

Python实现解析Bit Torrent种子文件内容的方法

这篇文章主要介绍了Python实现解析Bit Torrent种子文件内容的方法,结合实例形式分析了Python针对Torrent文件的读取与解析相关操作技巧与注意事项,需要的朋友可以参考下
收藏 0 赞 0 分享

Python实现文件内容批量追加的方法示例

这篇文章主要介绍了Python实现文件内容批量追加的方法,结合实例形式分析了Python文件的读写相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

Python简单实现自动删除目录下空文件夹的方法

这篇文章主要介绍了Python简单实现自动删除目录下空文件夹的方法,涉及Python针对文件与目录的读取、判断、删除等相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

简单学习Python多进程Multiprocessing

这篇文章主要和大家一起简单的学习Python多进程Multiprocessing ,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
收藏 0 赞 0 分享

Python导入模块时遇到的错误分析

这篇文章主要给大家详细解释了在Python处理导入模块的时候出现错误以及具体的情况分析,非常的详尽,有需要的小伙伴可以参考下
收藏 0 赞 0 分享
查看更多