Python正则表达式分组概念与用法详解

所属分类: 脚本专栏 / python 阅读数: 71
收藏 0 赞 0 分享

本文实例讲述了Python正则表达式分组概念与用法。分享给大家供大家参考,具体如下:

正则表达式分组

分组就是用一对圆括号“()”括起来的正则表达式,匹配出的内容就表示一个分组。从正则表达式的左边开始看,看到的第一个左括号“(”表示第一个分组,第二个表示第二个分组,依次类推,需要注意的是,有一个隐含的全局分组(就是0),就是整个正则表达式。

分完组以后,要想获得某个分组的内容,直接使用group(num)和groups()函数去直接提取就行。

例如:提取代码中的超链接中的文本

>>> s='<div><a href="https://support.google.com/chrome/?p=ui_hotword_search" rel="external nofollow" target="_blank">更多</a><p>dfsl</p></div>'
>>> print re.search(r'<a.*>(.*)</a>',s).group(1)
更多

或者

>>> print re.match(r'.*<a.*>(.*)</a>',s).group(1)
更多

按照上面的分组匹配以后,我们就可以拿到我们想拿到的字串,但是如果我们正则表达式中括号比较多,那我们在拿我们想要的字串时,要去挨个数我们想要的字串时第几个括号,这样会很麻烦,这个时候Python又引入了另一种分组,那就是命名分组,上面的叫无名分组。

命名分组

命名分组就是给具有默认分组编号的组另外再给一个别名。命名分组的语法格式如下:

(?P<name>正则表达式)#name是一个合法的标识符

如:提取字符串中的ip地址

>>> s = "ip='230.192.168.78',version='1.0.0'"
>>> re.search(r"ip='(?P<ip>\d+\.\d+\.\d+\.\d+).*", s)
>>> res.group('ip')#通过命名分组引用分组
'230.192.168.78'

后向引用

正则表达式中,放在圆括号“()”中的表示是一个组。然后你可以对整个组使用一些正则操作,例如重复操作符。
要注意的是,只有圆括号”()”才能用于形成组。”“用于定义字符集。”{}”用于定义重复操作。
当用”()”定义了一个正则表达式组后,正则引擎则会把被匹配的组按照顺序编号,存入缓存。这样我们想在后面对已经匹配过的内容进行引用时,就可以用”\数字”的方式或者是通过命名分组进行”(?P=name)“进行引用。\1表示引用第一个分组,\2引用第二个分组,以此类推,\n引用第n个组。而\0则引用整个被匹配的正则表达式本身。这些引用都必须是在正则表达式中才有效,用于匹配一些重复的字符串。
如:

#通过命名分组进行后向引用
>>> re.search(r'(?P<name>go)\s+(?P=name)\s+(?P=name)', 'go go go').group('name')
'go'
#通过默认分组编号进行后向引用
>>> re.search(r'(go)\s+\1\s+\1', 'go go go').group()
'go go go'

交换字符串的位置

>>> s = 'abc.xyz'
>>> re.sub(r'(.*)\.(.*)', r'\2.\1', s)
'xyz.abc'

前向肯定断言、后向肯定断言

前向肯定断言的语法:

(?=pattern)

后向肯定断言的语法:

(?<=pattern)

需要注意的是,如果在匹配的过程中,需要同时用到前向肯定断言和后向肯定断言,那么必须将后向肯定断言写在正则语句的前面,前向肯定断言写在正则语句的后面,表示后向肯定模式之后,前行肯定模式之前。
如:获取c语言代码中的注释内容

>>> s1='''char *a="hello world"; char b='c'; /* this is comment */ int c=1; /* t
his is multiline comment */'''
>>> re.findall( r'(?<=/\*).+?(?=\*/)' , s1 ,re.M|re.S)
[' this is comment ', ' this is multiline comment ']

(?<=/*)这个是后向肯定断言,表示“/*”之后。(?=*/)这个为前向肯定断言,表示“*/”之前,这两合并起来就是一个区间了,所以后向肯定断言放在前向肯定断言前面。

前向否定断言、后向否定断言

前向否定断言语法:

(?!pattern)

后向否定断言语法:

(?<!pattern)

前向否定和后向否定实例:

#提取不是.txt结尾的文件
>>> f1 = 'aaa.txt'
>>> re.findall(r'.*\..*$(?<!txt$)',f1)
[]
#提取不以数字开头的文件
>>> re.findall(r'^(?!\d+).*','1txt.txt')
[]
#提取不以数字开头不以py结尾的文件
>>> re.findall(r'^(?!\d+).+?\..*$(?<!py$)','test.py')
[]
>>> re.findall(r'^(?!\d+).+?\..*$(?<!py$)','test.txt')
['test.txt']

PS:这里再为大家提供2款非常方便的正则表达式工具供大家参考使用:

JavaScript正则表达式在线测试工具:
http://tools.jb51.net/regex/javascript

正则表达式在线生成工具:
http://tools.jb51.net/regex/create_reg

更多关于Python相关内容可查看本站专题:《Python正则表达式用法总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总

希望本文所述对大家Python程序设计有所帮助。

更多精彩内容其他人还在看

Python中模块string.py详解

这篇文章主要介绍了Python中模块之string.py的相关资料,文中介绍的非常详细,对大家具有一定的参考价值,需要的朋友们下面来一起看看吧。
收藏 0 赞 0 分享

Python中关键字nonlocal和global的声明与解析

这篇文章主要给大家介绍了关于Python中关键字nonlocal和global的声明与解析的相关资料,文中介绍的非常详细,相信对大家具有一定的参考价值,需要的朋友们下面来一起看看吧。
收藏 0 赞 0 分享

python中pandas.DataFrame对行与列求和及添加新行与列示例

pandas是python环境下最有名的数据统计包,而DataFrame翻译为数据框,是一种数据组织方式,这篇文章主要给大家介绍了python中pandas.DataFrame对行与列求和及添加新行与列的方法,文中给出了详细的示例代码,需要的朋友可以参考借鉴,下面来一起看看吧。
收藏 0 赞 0 分享

Python中str.format()详解

本文主要给大家详细介绍的是python编程中str.format()的基本语法和高级用法,非常的详细,并附有示例,希望大家能够喜欢
收藏 0 赞 0 分享

python中pandas.DataFrame的简单操作方法(创建、索引、增添与删除)

这篇文章主要介绍了python中pandas.DataFrame的简单操作方法,其中包括创建、索引、增添与删除等的相关资料,文中介绍的非常详细,需要的朋友可以参考借鉴,下面来一起看看吧。
收藏 0 赞 0 分享

Python IDLE 错误:IDLE''s subprocess didn''t make connection 的解决方案

这篇文章主要介绍了Python IDLE 错误:IDLE's subprocess didn't make connection 的解决方案的相关资料,需要的朋友可以参考下
收藏 0 赞 0 分享

Python中类型检查的详细介绍

Python是一种非常动态的语言,函数定义中完全没有类型约束。下面这篇文章主要给大家详细介绍了Python中类型检查的相关资料,需要的朋友可以参考借鉴,下面来一起看看吧。
收藏 0 赞 0 分享

利用python程序生成word和PDF文档的方法

这篇文章主要给大家介绍了利用python程序生成word和PDF文档的方法,文中给出了详细的介绍和示例代码,相信对大家具有一定的参考价值,有需要的朋友们下面来一起看看吧。
收藏 0 赞 0 分享

python用装饰器自动注册Tornado路由详解

这篇文章主要给大家介绍了python用装饰器自动注册Tornado路由,文中给出了三个版本的解决方法,有需要的朋友可以参考借鉴,下面来一起看看吧。
收藏 0 赞 0 分享

让python 3支持mysqldb的解决方法

这篇文章主要介绍了关于让python 3支持mysqldb的解决方法,文中给出解决的示例代码,相信对大家具有一定的参考价值,有需要的朋友可以一起来看看。
收藏 0 赞 0 分享
查看更多