谈谈如何手动释放Python的内存

所属分类: 脚本专栏 / python 阅读数: 333
收藏 0 赞 0 分享

在上篇博客中,提到了对一个脚本进行的多次优化。当时以为已经优化得差不多了,但是当测试人员测试时,我才发现,踩到了Python的一个大坑。

在上文的优化中,对每500个用户,会进行一些计算并记录结果在磁盘文件中。原本以为这么做,这些结果就在磁盘文件中了,而不会再继续占用内存;但实际上,Python的大坑就是Python不会自动清理这些内存。这是由其本身实现决定的。具体原因网上多有文章介绍,这里就不copy了。

本篇博客将贴一个笔者的实验脚本,用以说明Python确实存在这么一个不释放内存的现象,另外也提出一个解决方案,即:先del,再显式调用gc.collect(). 脚本和具体效果见下。

实验环境一:Win 7, Python 2.7

from time import sleep, time 
import gc 
 
def mem(way=1): 
 print time() 
 for i in range(10000000): 
  if way == 1: 
   pass 
  else: # way 2, 3 
   del i 
    
 print time() 
 if way == 1 or way == 2: 
  pass 
 else: # way 3 
  gc.collect() 
 print time() 
   
if __name__ == "__main__": 
 print "Test way 1: just pass" 
 mem(way=1) 
 sleep(20) 
 print "Test way 2: just del" 
 mem(way=2) 
 sleep(20) 
 print "Test way 3: del, and then gc.collect()" 
 mem(way=3) 
 sleep(20) 
  

运行结果如下:

Test way 1: just pass 
1426688589.47 
1426688590.25 
1426688590.25 
Test way 2: just del 
1426688610.25 
1426688611.05 
1426688611.05 
Test way 3: del, and then gc.collect() 
1426688631.05 
1426688631.85 
1426688631.95 

对于way 1和way 2,结果是完全一样的,程序内存消耗峰值是326772KB,在sleep 20秒时,内存实时消耗是244820KB;

对于way 3,程序内存消耗峰值同上,但是sleep时内存实时消耗就只有6336KB了。

实验环境二: Ubuntu 14.10, Python 2.7.3

运行结果:

Test way 1: just pass 
1426689577.46 
1426689579.41 
1426689579.41 
Test way 2: just del 
1426689599.43 
1426689601.1 
1426689601.1 
Test way 3: del, and then gc.collect() 
1426689621.12 
1426689622.8 
1426689623.11 
ubuntu@my_machine:~$ ps -aux | grep test_mem 
Warning: bad ps syntax, perhaps a bogus '-'? See http://procps.sf.net/faq.html 
ubuntu 9122 10.0 6.0 270916 245564 pts/1 S+ 14:39 0:03 python test_mem.py 
ubuntu 9134 0.0 0.0 8104 924 pts/2 S+ 14:40 0:00 grep --color=auto test_mem 
ubuntu@my_machine:~$ ps -aux | grep test_mem 
Warning: bad ps syntax, perhaps a bogus '-'? See http://procps.sf.net/faq.html 
ubuntu 9122 10.0 6.0 270916 245564 pts/1 S+ 14:39 0:03 python test_mem.py 
ubuntu 9134 0.0 0.0 8104 924 pts/2 S+ 14:40 0:00 grep --color=auto test_mem 
ubuntu@my_machine:~$ ps -aux | grep test_mem 
Warning: bad ps syntax, perhaps a bogus '-'? See http://procps.sf.net/faq.html 
ubuntu 9122 11.6 0.1 30956 5608 pts/1 S+ 14:39 0:05 python test_mem.py 

结论:

以上说明,当调用del时,其实Python并不会真正release内存,而是将其继续放在其内存池中;只有在显式调用gc.collect()时,才会真正release内存。

进一步:

其实回到上一篇博客的脚本中,也让其引入gc.collect(),然后写个监控脚本监测内存消耗情况:

while ((1)); do ps -aux | sort -n -k5,6 | grep my_script; free; sleep 5; done 

结果发现:内存并不会在每500个用户一组执行完后恢复,而是一直持续消耗到仅存约70MB时,gc才好像起作用。本环境中,机器使用的是Cloud instance,总内存2G,可用内存约为1G,本脚本内存常用消耗是900M - 1G。换句话说,对于这个脚本来说,gc并没有立即起作用,而是在系统可用内存从1 - 1.2G下降到只剩70M左右时,gc才开始发挥作用。这点确实比较奇怪,不知道和该脚本是在Thread中使用的gc.collect()是否有关,或者是gc发挥作用原本就不是可控的。笔者尚未做相关实验,可能在下篇博客中继续探讨。

但是,可以肯定的是,若不使用gc.collect(), 原脚本将会将系统内存耗尽而被杀死。这一点从syslog中可以明显看出。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

更多精彩内容其他人还在看

Python实现按学生年龄排序的实际问题详解

这篇文章主要给大家介绍了关于Python实现按学生年龄排序实际问题的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面跟着小编来一起学习学习吧。
收藏 0 赞 0 分享

Python开发的HTTP库requests详解

Requests是用Python语言编写,基于urllib,采用Apache2 Licensed开源协议的HTTP库。它比urllib更加方便,可以节约我们大量的工作,完全满足HTTP测试需求。Requests的哲学是以PEP 20 的习语为中心开发的,所以它比urllib更加P
收藏 0 赞 0 分享

Python网络爬虫与信息提取(实例讲解)

下面小编就为大家带来一篇Python网络爬虫与信息提取(实例讲解)。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

在python3环境下的Django中使用MySQL数据库的实例

下面小编就为大家带来一篇在python3环境下的Django中使用MySQL数据库的实例。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python 3.x读写csv文件中数字的方法示例

在我们日常开发中经常需要对csv文件进行读写,下面这篇文章主要给大家介绍了关于Python 3.x读写csv文件中数字的相关资料,文中通过示例代码介绍的非常详细,对大家具有一定的参考学习价值,需要的朋友们下面跟着小编来一起学习学习吧。
收藏 0 赞 0 分享

Python实现解析Bit Torrent种子文件内容的方法

这篇文章主要介绍了Python实现解析Bit Torrent种子文件内容的方法,结合实例形式分析了Python针对Torrent文件的读取与解析相关操作技巧与注意事项,需要的朋友可以参考下
收藏 0 赞 0 分享

Python实现文件内容批量追加的方法示例

这篇文章主要介绍了Python实现文件内容批量追加的方法,结合实例形式分析了Python文件的读写相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

Python简单实现自动删除目录下空文件夹的方法

这篇文章主要介绍了Python简单实现自动删除目录下空文件夹的方法,涉及Python针对文件与目录的读取、判断、删除等相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

简单学习Python多进程Multiprocessing

这篇文章主要和大家一起简单的学习Python多进程Multiprocessing ,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
收藏 0 赞 0 分享

Python导入模块时遇到的错误分析

这篇文章主要给大家详细解释了在Python处理导入模块的时候出现错误以及具体的情况分析,非常的详尽,有需要的小伙伴可以参考下
收藏 0 赞 0 分享
查看更多