图文讲解选择排序算法的原理及在Python中的实现

所属分类: 脚本专栏 / python 阅读数: 1613
收藏 0 赞 0 分享

基本思想:从未排序的序列中找到一个最小的元素,放到第一位,再从剩余未排序的序列中找到最小的元素,放到第二位,依此类推,直到所有元素都已排序完毕。假设序列元素总共n+1个,则我们需要找n轮,就可以使该序列排好序。在每轮中,我们可以这样做:用未排序序列的第一个元素和后续的元素依次相比较,如果后续元素小,则后续元素和第一个元素交换位置放到,这样一轮后,排在第一位的一定是最小的。这样进行n轮,就可排序。

原理图
图1:

201654103109156.gif (288×288)

图2:

201654103139716.gif (723×224)

初始数据不敏感,不管初始的数据有没有排好序,都需要经历N2/2次比较,这对于一些原本排好序,或者近似排好序的序列来说并不具有优势。在最好的情况下,即所有的排好序,需要0次交换,最差的情况,倒序,需要N-1次交换。

数据交换的次数较少,如果某个元素位于正确的最终位置上,则它不会被移动。在最差情况下也只需要进行N-1次数据交换,在所有的完全依靠交换去移动元素的排序方法中,选择排序属于比较好的一种。

python代码实现:

def sort_choice(numbers, max_to_min=True):
 """
 我这没有按照标准的选择排序,假设列表长度为n,思路如下:
  1、获取最大值x,将x移动到列最后。[n1, n2, n3, ... nn]
  2、将x追加到排序结果[n1, n3, ... nn, n2]
  3、获取排序后n-1个元素[n1, n3, ... nn],重复第一步,重复n-1次。

 max_to_min是指从大到小排序,默认为true;否则从小到大排序。
 对[8, 4, 1, 0, 9]排序,大致流程如下:
 sorted_numbers = []
 [8, 4, 1, 0, 9], sorted_numbers = [9]
 [4, 1, 0, 8], sorted_numbers = [9, 8]
 [1, 0, 4], sorted_numbers = [9, 8, 4]
 [0, 1], sorted_numbers = [9, 8, 4, 1]
 [0], sorted_numbers = [9, 8, 4, 1, 0]
 """
 if len(numbers) <= 1:
  return numbers
 sorted_list = []
 index = 0
 for i in xrange(len(numbers) - index):
  left_numbers = _get_left_numbers(numbers, max_to_min)
  numbers = left_numbers[:-1]
  sorted_list.append(left_numbers[-1])
  index += 1
 return sorted_list

def _get_left_numbers(numbers, get_max=True):
 '''
 获取最大值或者最小值x,并且将x抽取出来,置于列表最后.
 Ex: get_max=True, [1, 4, 3] ⇒ [1, 3, 4] 
  get_max=False, [1, 4, 3] ⇒ [4, 3 ,1] 
 '''
 max_index = 0
 for i, num in enumerate(numbers):
  if get_max:
   if num > numbers[max_index]:
    max_index = i
  else:
   if num < numbers[max_index]:
    max_index = i
 numbers = numbers[:max_index] + numbers[max_index + 1:] + [numbers[max_index]]
 return numbers

测试一下:

>>> get_left_numbers([0, 4, 0, 31, 9, 19, 89,67], get_max=True)
[0, 4, 0, 31, 9, 19, 67, 89]
>>> get_left_numbers([0, 4, 0, 31, 9, 19, 89,67], get_max=False)
[4, 0, 31, 9, 19, 89, 67, 0]

>>> sort_choice([0, 4, 0, 31, 9, 19, 89,67], max_to_min=False)
[0, 0, 4, 9, 19, 31, 67, 89]
>>> sort_choice([0, 4, 0, 31, 9, 19, 89,67], max_to_min=True)
[89, 67, 31, 19, 9, 4, 0, 0]

更多精彩内容其他人还在看

深入浅析python3中的unicode和bytes问题

在python3中,有两种字符串类型,默认的就是str,即unicode,也叫做文本类型。这篇文章主要介绍了python3中的unicode和bytes问题,需要的朋友可以参考下
收藏 0 赞 0 分享

python3 自动识别usb连接状态,即对usb重连的判断方法

今天小编就为大家分享一篇python3 自动识别usb连接状态,即对usb重连的判断方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

python二进制文件的转译详解

这篇文章主要介绍了python二进制文件的转译详解的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
收藏 0 赞 0 分享

python字符串中匹配数字的正则表达式

正则表达式是一个特殊的字符序列,它能帮助你方便的检查一个字符串是否与某种模式匹配。这篇文章主要介绍了python字符串中匹配数字的正则表达式 ,需要的朋友可以参考下
收藏 0 赞 0 分享

在Python中COM口的调用方法

今天小编就为大家分享一篇在Python中COM口的调用方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python read函数按字节(字符)读取文件的实现

这篇文章主要介绍了Python read函数按字节(字符)读取文件的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
收藏 0 赞 0 分享

python读取图片的方式,以及将图片以三维数组的形式输出方法

今天小编就为大家分享一篇python读取图片的方式,以及将图片以三维数组的形式输出方法,具有好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

在python中利用numpy求解多项式以及多项式拟合的方法

今天小编就为大家分享一篇在python中利用numpy求解多项式以及多项式拟合的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python正则表达式匹配数字和小数的方法

这篇文章主要介绍了Python正则匹配数字和小数的方法,本文通过示例代码给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
收藏 0 赞 0 分享

python读写配置文件操作示例

这篇文章主要介绍了python读写配置文件操作,结合实例形式分析了Python针对ini配置文件的读取、解析、写入等相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享
查看更多