举例详解Python中yield生成器的用法

所属分类: 脚本专栏 / python 阅读数: 1787
收藏 0 赞 0 分享

yield是生成的意思,但是在python中则是作为生成器理解,生成器的用处主要可以迭代,这样简化了很多运算模型(还不是很了解是如何简化的)。
yield是一个表达式,是有返回值的.
当一个函数中含有yield时,它不再是一个普通的函数,而是一个生成器.当该函数被调用时不会自动执行,而是暂停,见第一个例子:
例1:

>>> def mygenerator():
...  print 'start...'
...  yield 5
... 
>>> mygenerator()   //在此处调用,并没有打印出start...说明存在yield的函数没有被运行,即暂停
<generator object mygenerator at 0xb762502c>
>>> mygenerator().next()  //调用next()即可让函数运行.
start...
5
>>> 

如一个函数中出现多个yield则next()会停止在下一个yield前,见例2:
例2:

>>> def mygenerator():
...  print 'start...'
...  yield 5
... 
>>> mygenerator()   //在此处调用,并没有打印出start...说明存在yield的函数没有被运行,即暂停
<generator object mygenerator at 0xb762502c>
>>> mygenerator().next()  //调用next()即可让函数运行.
start...
5
>>> 

为什么yield 5会输出5,yield 23会输出23?
我们猜测可能是因为yield是表达式,存在返回值.
那么这是否可以认为yield 5的返回值一定是5吗?实际上并不是这样,这个与send函数存在一定的关系,这个函数实质上与next()是相似的,区别是send是传递yield表达式的值进去,而next不能传递特定的值,只能传递None进去,因此可以认为g.next()和g.send(None)是相同的。见例3:
例3:

>>> def fun():
...  print 'start...'
...  m = yield 5
...  print m
...  print 'middle...'
...  d = yield 12
...  print d
...  print 'end...'
... 
>>> m = fun()    //创建一个对象
>>> m.next()    //会使函数执行到下一个yield前
start...
5
>>> m.send('message')  //利用send()传递值
message     //send()传递进来的 
middle...
12
>>> m.next()
None      //可见next()返回值为空
end...
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
StopIteration

在multiprocess中的使用


python在处理数据的时候,memory-heavy 的数据往往会导致程序没办反运行或者运行期间服务器其他程序效率受到影响。这种情况往往会把数据集合变为通过genertor来遍历。

但同时如我们所知,generoter看似只能被单进程消费,这样效率很低。
generator 可以被pool.map消费。

看一下pool.py的源码。

for i, task in enumerate(taskseq):
  ...
  try:
   put(task)
  except IOError:
   debug('could not put task on queue')
   break

实际是先将generator全部消费掉放到queue中。然后通过map来并行。这样是解决了使用map来并行。

但是依然没有解决占用内存的问题。这里有两步占用内存。

  1.     第一步是全部消费掉的generator。
  2.     第二步并行运算全部data。

解决第一个问题,通过部分消费generator来达到。
解决第二个问题,可以通过imap来达到.

示例代码如下:

import multiprocessing as mp
import itertools
import time


def g():
 for el in xrange(50):
  print el
  yield el

import os

def f(x):
 time.sleep(1)
 print str(os.getpid()) +" "+ str(x)
 return x * x

if __name__ == '__main__':
 pool = mp.Pool(processes=4)    # start 4 worker processes
 go = g()
 result = []
 N = 11
 while True:
  g2 = pool.imap(f, itertools.islice(go, N))
  if g2:
   for i in g2:
    result.append(i)
    time.sleep(1)
  else:
   break
 print(result)

ps: 使用注意事项。在produce数据的时候,尽量少做操作,应为即使是map也是单线程的来消费数据。所以尽量把操作放到map中作。这样才能更好的利用多进程提高效率。

更多精彩内容其他人还在看

使用Python写一个量化股票提醒系统

这篇文章主要介绍了小白用Python写了一个股票提醒系统,迷你版量化系统,完美的实现了实时提醒功能,代码简单易懂,非常不错,具有一定的参考借鉴价值,需要的朋友可以参考下
收藏 0 赞 0 分享

Python绘制的二项分布概率图示例

这篇文章主要介绍了Python绘制的二项分布概率图,涉及Python基于numpy、math的数值运算及matplotlib图形绘制相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

Python Learning 列表的更多操作及示例代码

这篇文章主要介绍了Python Learning-列表的更多操作,需要的朋友可以参考下
收藏 0 赞 0 分享

关于python列表增加元素的三种操作方法

这篇文章主要介绍了关于python列表增加元素的几种操作方法,主要有insert方法,extend方法和append方法,每种方法给大家介绍的非常详细,需要的朋友可以参考下
收藏 0 赞 0 分享

如何在python字符串中输入纯粹的{}

这篇文章主要介绍了如何在python字符串中输入纯粹的{}以及python字符串连接的三种方法,需要的朋友可以参考下
收藏 0 赞 0 分享

浅谈Django的缓存机制

这篇文章主要介绍了浅谈Django的缓存机制,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Django 限制用户访问频率的中间件的实现

这篇文章主要介绍了Django 限制用户访问频率的中间件的实现,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

示例详解Python3 or Python2 两者之间的差异

这篇文章主要介绍了Python3 or Python2?示例详解两者之间的差异,在本文中给大家介绍的非常详细,需要的朋友可以参考下
收藏 0 赞 0 分享

Python wxpython模块响应鼠标拖动事件操作示例

这篇文章主要介绍了Python wxpython模块响应鼠标拖动事件操作,结合实例形式分析了Python使用wxpython模块创建窗口、绑定事件及相应鼠标事件相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

使用Python实现一个栈判断括号是否平衡

栈(Stack)在计算机领域是一个被广泛应用的集合,栈是线性集合,访问都严格地限制在一段,叫做顶(top)。这篇文章主要介绍了使用Python实现一个栈判断括号是否平衡,需要的朋友可以参考下
收藏 0 赞 0 分享
查看更多