Python while、for、生成器、列表推导等语句的执行效率测试

所属分类: 脚本专栏 / python 阅读数: 1121
收藏 0 赞 0 分享

一个功能的实现,可以用多种语句来实现,比如说:while语句、for语句、生成器、列表推导、内置函数等实现,然而他们的效率并不一样。写了一个小程序来测试它们执行的效率。

测试内容:
将一个数字大小为20万的数字,依次取绝对值,放到列表中,测试重复1千次.
测试程序:

复制代码 代码如下:

import time,sys 
reps = 1000                #测试重复次数 
nums = 200000              #测试时数字大小 
 
 
def tester(func,*args):    #总体测试函数 
    startTime = time.time() 
    for i in range(reps): 
        func(*args) 
    elapsed = time.time() - startTime #用time模块来测试,结束时间与开始时间差 
    return elapsed 
 
def while_Statement():     #while循环实现 
    res = [] 
    x   = 0 
    while nums > x: 
        x += 1 
        res.append(abs(x)) 
 
def for_Statement():       #for循环实现 
    res = [] 
    for x in range(nums): 
        res.append(abs(x)) 
 
def generator_Expression():#生成器实现 
    res = list(abs(x) for x in range(nums)) 
 
def list_Comprehension():  #列表解析实现 
    res = [abs(x) for x in range(nums)] 
 
 
def map_Function():        #内置函数map实现 
    res = map(abs, range(nums)) 
 
 
print sys.version          #打印系统版本 
tests = [while_Statement, for_Statement, generator_Expression, list_Comprehension, map_Function] 
for testfunc in tests:     #将待测函数放置列表中依次遍历 
    print testfunc.__name__.ljust(20),': ',tester(testfunc)  # 
 

测试结果:

复制代码 代码如下:

>>>  
2.7.4 (default, Apr  6 2013, 19:55:15) [MSC v.1500 64 bit (AMD64)] 
while_Statement      :  84.5769999027 
for_Statement        :  75.2709999084 
generator_Expression :  62.3519999981 
list_Comprehension   :  60.4090001583 
map_Function         :  47.5629999638 

改写程序:
复制代码 代码如下:

import sys 
nums = 100 
 
def while_Statement(): 
    res = [] 
    x   = 0 
    while nums > x: 
        x += 1 
        res.append(abs(x)) 
 
def for_Statement(): 
    res = [] 
    for x in range(nums): 
        res.append(abs(x)) 
 
def generator_Expression(): 
    res = list(abs(x) for x in range(nums)) 
 
def list_Comprehension(): 
    res = [abs(x) for x in range(nums)] 
 
 
def map_Function(): 
    res = map(abs, range(nums)) 
 
if __name__=='__main__': 
    import timeit            #用timeit模块来测试 
    print sys.version 
    funcs = [while_Statement, for_Statement, generator_Expression, list_Comprehension, map_Function] 
    for func in funcs: 
        print func.__name__.ljust(20),': ',timeit.timeit("func()", setup="from __main__ import func") 

测试结果:

复制代码 代码如下:

>>>  
2.7.4 (default, Apr  6 2013, 19:55:15) [MSC v.1500 64 bit (AMD64)] 
while_Statement      :  37.1800067428 
for_Statement        :  30.3999109329 
generator_Expression :  27.2597866441 
list_Comprehension   :  17.386223449 
map_Function         :  12.7386868963 

测试分析:

用time模块,和timeit模块两种测试方式测试了很多组数字,得出的结果是执行内置函数最快,其次就是列表推导,再其次生成器和for循环,while循环最慢。一般最快的使用内置函数的方法要比使用最慢的while快两倍以上。简单分析下原因:内置函数比如说map,filter,reduce(在Python3.0中移除)基本上都是用C语言来实现的,所以速度是最快的,列表推导内的迭代在解释器内是以C语言的速度运行的(一般是for循环的两倍,对大型文件操作而言,用列表推导效果尤其明显),相比较for循环代码是在PVM步进运行要快的多。但for循环里面含range(),相对速度也会快些,while语句是纯粹用Python代码写成,所以速度最慢。所以函数式编程最好使用内置函数,然后才考虑使用列表推导或for循环。最好不用while循环.

更多精彩内容其他人还在看

python2.7无法使用pip的解决方法(安装easy_install)

下面小编就为大家分享一篇python2.7无法使用pip的解决方法(安装easy_install),具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python实现的计算马氏距离算法示例

这篇文章主要介绍了Python实现的计算马氏距离算法,简单说明了马氏距离算法原理,并结合实例形式分析了Python实现与使用马氏距离算法的相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

python逐行读写txt文件的实例讲解

下面小编就为大家分享一篇python逐行读写txt文件的实例讲解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

python批量读取txt文件为DataFrame的方法

下面小编就为大家分享一篇python批量读取txt文件为DataFrame的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python通过调用mysql存储过程实现更新数据功能示例

这篇文章主要介绍了Python通过调用mysql存储过程实现更新数据功能,结合实例形式分析了Python调用mysql存储过程实现更新数据的具体步骤与相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

Python实现的HMacMD5加密算法示例

这篇文章主要介绍了Python实现的HMacMD5加密算法,简单说明了HMAC-MD5加密算法的概念、原理并结合实例形式分析了Python实现HMAC-MD5加密算法的相关操作技巧,,末尾还附带了Java实现HMAC-MD5加密算法的示例,需要的朋友可以参考下
收藏 0 赞 0 分享

图解Python变量与赋值

Python是一门独特的语言,与C语言有很大区别,初学Python很多萌新表示对变量与赋值不理解,这里就大家介绍一下,需要的朋友可以参考下
收藏 0 赞 0 分享

Python中的并发处理之asyncio包使用的详解

本篇文章主要介绍了Python中的并发处理之asyncio包使用的详解,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python获取二维矩阵每列最大值的方法

下面小编就为大家分享一篇Python获取二维矩阵每列最大值的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

numpy找出array中的最大值,最小值实例

下面小编就为大家分享一篇numpy找出array中的最大值,最小值实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享
查看更多