探究Python多进程编程下线程之间变量的共享问题

所属分类: 脚本专栏 / python 阅读数: 849
收藏 0 赞 0 分享

 1、问题:

群中有同学贴了如下一段代码,问为何 list 最后打印的是空值?
 

from multiprocessing import Process, Manager
import os
 
manager = Manager()
vip_list = []
#vip_list = manager.list()
 
def testFunc(cc):
  vip_list.append(cc)
  print 'process id:', os.getpid()
 
if __name__ == '__main__':
  threads = []
 
  for ll in range(10):
    t = Process(target=testFunc, args=(ll,))
    t.daemon = True
    threads.append(t)
 
  for i in range(len(threads)):
    threads[i].start()
 
  for j in range(len(threads)):
    threads[j].join()
 
  print "------------------------"
  print 'process id:', os.getpid()
  print vip_list

其实如果你了解 python 的多线程模型,GIL 问题,然后了解多线程、多进程原理,上述问题不难回答,不过如果你不知道也没关系,跑一下上面的代码你就知道是什么问题了。
 

python aa.py
process id: 632
process id: 635
process id: 637
process id: 633
process id: 636
process id: 634
process id: 639
process id: 638
process id: 641
process id: 640
------------------------
process id: 619
[]

将第 6 行注释开启,你会看到如下结果:
 

process id: 32074
process id: 32073
process id: 32072
process id: 32078
process id: 32076
process id: 32071
process id: 32077
process id: 32079
process id: 32075
process id: 32080
------------------------
process id: 32066
[3, 2, 1, 7, 5, 0, 6, 8, 4, 9]

2、python 多进程共享变量的几种方式:
(1)Shared memory:
Data can be stored in a shared memory map using Value or Array. For example, the following code

http://docs.python.org/2/library/multiprocessing.html#sharing-state-between-processes
 

from multiprocessing import Process, Value, Array
 
def f(n, a):
  n.value = 3.1415927
  for i in range(len(a)):
    a[i] = -a[i]
 
if __name__ == '__main__':
  num = Value('d', 0.0)
  arr = Array('i', range(10))
 
  p = Process(target=f, args=(num, arr))
  p.start()
  p.join()
 
  print num.value
  print arr[:]

结果:
 

3.1415927
[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]

(2)Server process:

A manager object returned by Manager() controls a server process which holds Python objects and allows other processes to manipulate them using proxies.
A manager returned by Manager() will support types list, dict, Namespace, Lock, RLock, Semaphore, BoundedSemaphore, Condition, Event, Queue, Value and Array.
代码见开头的例子。

http://docs.python.org/2/library/multiprocessing.html#managers
3、多进程的问题远不止这么多:数据的同步

看段简单的代码:一个简单的计数器:
 

from multiprocessing import Process, Manager
import os
 
manager = Manager()
sum = manager.Value('tmp', 0)
 
def testFunc(cc):
  sum.value += cc
 
if __name__ == '__main__':
  threads = []
 
  for ll in range(100):
    t = Process(target=testFunc, args=(1,))
    t.daemon = True
    threads.append(t)
 
  for i in range(len(threads)):
    threads[i].start()
 
  for j in range(len(threads)):
    threads[j].join()
 
  print "------------------------"
  print 'process id:', os.getpid()
  print sum.value

结果:
 

------------------------
process id: 17378
97

也许你会问:WTF?其实这个问题在多线程时代就存在了,只是在多进程时代又杯具重演了而已:Lock!
 

from multiprocessing import Process, Manager, Lock
import os
 
lock = Lock()
manager = Manager()
sum = manager.Value('tmp', 0)
 
 
def testFunc(cc, lock):
  with lock:
    sum.value += cc
 
 
if __name__ == '__main__':
  threads = []
 
  for ll in range(100):
    t = Process(target=testFunc, args=(1, lock))
    t.daemon = True
    threads.append(t)
 
  for i in range(len(threads)):
    threads[i].start()
 
  for j in range(len(threads)):
    threads[j].join()
 
  print "------------------------"
  print 'process id:', os.getpid()
  print sum.value

这段代码性能如何呢?跑跑看,或者加大循环次数试一下。。。
4、最后的建议:

    Note that usually sharing data between processes may not be the best choice, because of all the synchronization issues; an approach involving actors exchanging messages is usually seen as a better choice. See also Python documentation: As mentioned above, when doing concurrent programming it is usually best to avoid using shared state as far as possible. This is particularly true when using multiple processes. However, if you really do need to use some shared data then multiprocessing provides a couple of ways of doing so.

5、Refer:

http://stackoverflow.com/questions/14124588/python-multiprocessing-shared-memory

http://eli.thegreenplace.net/2012/01/04/shared-counter-with-pythons-multiprocessing/

http://docs.python.org/2/library/multiprocessing.html#multiprocessing.sharedctypes.synchronized

更多精彩内容其他人还在看

使用Python写一个量化股票提醒系统

这篇文章主要介绍了小白用Python写了一个股票提醒系统,迷你版量化系统,完美的实现了实时提醒功能,代码简单易懂,非常不错,具有一定的参考借鉴价值,需要的朋友可以参考下
收藏 0 赞 0 分享

Python绘制的二项分布概率图示例

这篇文章主要介绍了Python绘制的二项分布概率图,涉及Python基于numpy、math的数值运算及matplotlib图形绘制相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

Python Learning 列表的更多操作及示例代码

这篇文章主要介绍了Python Learning-列表的更多操作,需要的朋友可以参考下
收藏 0 赞 0 分享

关于python列表增加元素的三种操作方法

这篇文章主要介绍了关于python列表增加元素的几种操作方法,主要有insert方法,extend方法和append方法,每种方法给大家介绍的非常详细,需要的朋友可以参考下
收藏 0 赞 0 分享

如何在python字符串中输入纯粹的{}

这篇文章主要介绍了如何在python字符串中输入纯粹的{}以及python字符串连接的三种方法,需要的朋友可以参考下
收藏 0 赞 0 分享

浅谈Django的缓存机制

这篇文章主要介绍了浅谈Django的缓存机制,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Django 限制用户访问频率的中间件的实现

这篇文章主要介绍了Django 限制用户访问频率的中间件的实现,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

示例详解Python3 or Python2 两者之间的差异

这篇文章主要介绍了Python3 or Python2?示例详解两者之间的差异,在本文中给大家介绍的非常详细,需要的朋友可以参考下
收藏 0 赞 0 分享

Python wxpython模块响应鼠标拖动事件操作示例

这篇文章主要介绍了Python wxpython模块响应鼠标拖动事件操作,结合实例形式分析了Python使用wxpython模块创建窗口、绑定事件及相应鼠标事件相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

使用Python实现一个栈判断括号是否平衡

栈(Stack)在计算机领域是一个被广泛应用的集合,栈是线性集合,访问都严格地限制在一段,叫做顶(top)。这篇文章主要介绍了使用Python实现一个栈判断括号是否平衡,需要的朋友可以参考下
收藏 0 赞 0 分享
查看更多