Python实现的一个简单LRU cache

所属分类: 脚本专栏 / python 阅读数: 1236
收藏 0 赞 0 分享

起因:我的同事需要一个固定大小的cache,如果记录在cache中,直接从cache中读取,否则从数据库中读取。python的dict 是一个非常简单的cache,但是由于数据量很大,内存很可能增长的过大,因此需要限定记录数,并用LRU算法丢弃旧记录。key 是整型,value是10KB左右的python对象

分析:

1)可以想到,在对于cache,我们需要维护 key -> value 的关系

2)而为了实现LRU,我们又需要一个基于时间的优先级队列,来维护   timestamp  -> (key, value) 的关系

3)当cache 中的记录数达到一个上界maxsize时,需要将timestamp 最小的(key,value) 出队列

4) 当一个(key, value) 被命中时,实际上我们需要将它从队列中,移除并插入到队列的尾部。

从分析可以看出我们的cache 要达到性能最优需要满足上面的四项功能,对于队表的快速移除和插入,链表显然是最优的选择,为了快速移除,最好使用双向链表,为了插入尾部,需要有指向尾部的指针。

下面用python 来实现:

复制代码 代码如下:

#encoding=utf-8

class LRUCache(object):
    def __init__(self, maxsize):
        # cache 的最大记录数
        self.maxsize = maxsize
        # 用于真实的存储数据
        self.inner_dd = {}
        # 链表-头指针
        self.head = None
        # 链表-尾指针
        self.tail = None

    def set(self, key, value):
        # 达到指定大小     
        if len(self.inner_dd) >= self.maxsize:
            self.remove_head_node()

        node = Node()
        node.data = (key, value)
        self.insert_to_tail(node)
        self.inner_dd[key] = node

    def insert_to_tail(self, node):
        if self.tail is None:
            self.tail = node
            self.head = node
        else:
            self.tail.next = node
            node.pre = self.tail
            self.tail = node

    def remove_head_node(self):
        node = self.head
        del self.inner_dd[node.data[0]]
        node = None
        self.head = self.head.next
        self.head.pre = None
    def get(self, key):
        if key in self.inner_dd:
            # 如果命中, 需要将对应的节点移动到队列的尾部
            node = self.inner_dd.get(key)
            self.move_to_tail(node)
            return node.data[1]
        return None

    def move_to_tail(self, node):
        # 只需处理在队列头部和中间的情况
        if not (node == self.tail):
            if node == self.head:
                self.head = node.next
                self.head.pre = None
                self.tail.next = node
                node.pre = self.tail
                node.next = None
                self.tail = node
            else:
                pre_node = node.pre
                next_node = node.next
                pre_node.next = next_node
                next_node.pre = pre_node

                self.tail.next = node
                node.pre = self.tail
                node.next = None
                self.tail = node

class Node(object):
    def __init__(self):
        self.pre = None
        self.next = None
        # (key, value)
        self.data = None

    def __eq__(self, other):
        if self.data[0] == other.data[0]:
            return True
        return False
    def __str__(self):
       return str(self.data)

if __name__ == '__main__':
    cache = LRUCache(10)
    for i in xrange(1000):
        cache.set(i, i+1)
        cache.get(2)
    for key in cache.inner_dd:
        print key, cache.inner_dd[key]

更多精彩内容其他人还在看

python2.7无法使用pip的解决方法(安装easy_install)

下面小编就为大家分享一篇python2.7无法使用pip的解决方法(安装easy_install),具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python实现的计算马氏距离算法示例

这篇文章主要介绍了Python实现的计算马氏距离算法,简单说明了马氏距离算法原理,并结合实例形式分析了Python实现与使用马氏距离算法的相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

python逐行读写txt文件的实例讲解

下面小编就为大家分享一篇python逐行读写txt文件的实例讲解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

python批量读取txt文件为DataFrame的方法

下面小编就为大家分享一篇python批量读取txt文件为DataFrame的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python通过调用mysql存储过程实现更新数据功能示例

这篇文章主要介绍了Python通过调用mysql存储过程实现更新数据功能,结合实例形式分析了Python调用mysql存储过程实现更新数据的具体步骤与相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

Python实现的HMacMD5加密算法示例

这篇文章主要介绍了Python实现的HMacMD5加密算法,简单说明了HMAC-MD5加密算法的概念、原理并结合实例形式分析了Python实现HMAC-MD5加密算法的相关操作技巧,,末尾还附带了Java实现HMAC-MD5加密算法的示例,需要的朋友可以参考下
收藏 0 赞 0 分享

图解Python变量与赋值

Python是一门独特的语言,与C语言有很大区别,初学Python很多萌新表示对变量与赋值不理解,这里就大家介绍一下,需要的朋友可以参考下
收藏 0 赞 0 分享

Python中的并发处理之asyncio包使用的详解

本篇文章主要介绍了Python中的并发处理之asyncio包使用的详解,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python获取二维矩阵每列最大值的方法

下面小编就为大家分享一篇Python获取二维矩阵每列最大值的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

numpy找出array中的最大值,最小值实例

下面小编就为大家分享一篇numpy找出array中的最大值,最小值实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享
查看更多