实现SQL Server 原生数据从XML生成JSON数据的实例代码

所属分类: 数据库 / MsSql 阅读数: 1505
收藏 0 赞 0 分享

实现SQL Server 原生数据从XML生成JSON数据的实例代码

   SQL Server 是关系数据库,查询结果通常都是数据集,但是在一些特殊需求下,我们需要XML数据,最近这些年,JSON作为WebAPI常用的交换数据格式,那么数据库如何生成JSON数据呢?今天就写了一个DEMO.

       1.创建表及测试数据

SET NOCOUNT ON 
 
IF OBJECT_ID('STATS') IS NOT NULL DROP TABLE STATS 
IF OBJECT_ID('STATIONS') IS NOT NULL DROP TABLE STATIONS 
IF OBJECT_ID('OPERATORS') IS NOT NULL DROP TABLE OPERATORS 
IF OBJECT_ID('REVIEWS') IS NOT NULL DROP TABLE REVIEWS 
 
-- Create and populate table with Station 
CREATE TABLE STATIONS(ID INTEGER PRIMARY KEY, CITY NVARCHAR(20), STATE CHAR(2), LAT_N REAL, LONG_W REAL); 
INSERT INTO STATIONS VALUES (13, 'Phoenix', 'AZ', 33, 112); 
INSERT INTO STATIONS VALUES (44, 'Denver', 'CO', 40, 105); 
INSERT INTO STATIONS VALUES (66, 'Caribou', 'ME', 47, 68); 
 
-- Create and populate table with Operators 
CREATE TABLE OPERATORS(ID INTEGER PRIMARY KEY, NAME NVARCHAR(20), SURNAME NVARCHAR(20)); 
INSERT INTO OPERATORS VALUES (50, 'John "The Fox"', 'Brown'); 
INSERT INTO OPERATORS VALUES (51, 'Paul', 'Smith'); 
INSERT INTO OPERATORS VALUES (52, 'Michael', 'Williams');  
 
-- Create and populate table with normalized temperature and precipitation data 
CREATE TABLE STATS ( 
    STATION_ID INTEGER REFERENCES STATIONS(ID), 
    MONTH INTEGER CHECK (MONTH BETWEEN 1 AND 12), 
    TEMP_F REAL CHECK (TEMP_F BETWEEN -80 AND 150), 
    RAIN_I REAL CHECK (RAIN_I BETWEEN 0 AND 100), PRIMARY KEY (STATION_ID, MONTH)); 
INSERT INTO STATS VALUES (13, 1, 57.4, 0.31); 
INSERT INTO STATS VALUES (13, 7, 91.7, 5.15); 
INSERT INTO STATS VALUES (44, 1, 27.3, 0.18); 
INSERT INTO STATS VALUES (44, 7, 74.8, 2.11); 
INSERT INTO STATS VALUES (66, 1, 6.7, 2.10); 
INSERT INTO STATS VALUES (66, 7, 65.8, 4.52); 
 
-- Create and populate table with Review 
CREATE TABLE REVIEWS(STATION_ID INTEGER,STAT_MONTH INTEGER,OPERATOR_ID INTEGER)  
insert into REVIEWS VALUES (13,1,50) 
insert into REVIEWS VALUES (13,7,50) 
insert into REVIEWS VALUES (44,7,51) 
insert into REVIEWS VALUES (44,7,52) 
insert into REVIEWS VALUES (44,7,50) 
insert into REVIEWS VALUES (66,1,51) 
insert into REVIEWS VALUES (66,7,51) 

2.查询结果集

select   STATIONS.ID    as ID, 
      STATIONS.CITY   as City, 
      STATIONS.STATE  as State, 
      STATIONS.LAT_N  as LatN, 
      STATIONS.LONG_W  as LongW, 
      STATS.MONTH    as Month, 
      STATS.RAIN_I   as Rain, 
      STATS.TEMP_F   as Temp, 
    OPERATORS.NAME  as Name, 
    OPERATORS.SURNAME as Surname 
from    stations  
inner join stats   on stats.STATION_ID=STATIONS.ID  
left join reviews  on reviews.STATION_ID=stations.id  
           and reviews.STAT_MONTH=STATS.[MONTH] 
left join OPERATORS on OPERATORS.ID=reviews.OPERATOR_ID 

结果:

2.查询xml数据

select stations.*, 
    (select stats.*,  
        (select OPERATORS.*  
        from  OPERATORS  
        inner join reviews on OPERATORS.ID=reviews.OPERATOR_ID  
        where reviews.STATION_ID=STATS.STATION_ID  
        and  reviews.STAT_MONTH=STATS.MONTH  
        for xml path('operator'),type 
        ) operators 
    from STATS  
    where STATS.STATION_ID=stations.ID  
    for xml path('stat'),type 
    ) stats  
from  stations  
for  xml path('station'),type 

结果:

<station> 
 <ID>13</ID> 
 <CITY>Phoenix</CITY> 
 <STATE>AZ</STATE> 
 <LAT_N>3.3000000e+001</LAT_N> 
 <LONG_W>1.1200000e+002</LONG_W> 
 <stats> 
  <stat> 
   <STATION_ID>13</STATION_ID> 
   <MONTH>1</MONTH> 
   <TEMP_F>5.7400002e+001</TEMP_F> 
   <RAIN_I>3.1000000e-001</RAIN_I> 
   <operators> 
    <operator> 
     <ID>50</ID> 
     <NAME>John "The Fox"</NAME> 
     <SURNAME>Brown</SURNAME> 
    </operator> 
   </operators> 
  </stat> 
  <stat> 
   <STATION_ID>13</STATION_ID> 
   <MONTH>7</MONTH> 
   <TEMP_F>9.1699997e+001</TEMP_F> 
   <RAIN_I>5.1500001e+000</RAIN_I> 
   <operators> 
    <operator> 
     <ID>50</ID> 
     <NAME>John "The Fox"</NAME> 
     <SURNAME>Brown</SURNAME> 
    </operator> 
   </operators> 
  </stat> 
 </stats> 
</station> 
<station> 
 <ID>44</ID> 
 <CITY>Denver</CITY> 
 <STATE>CO</STATE> 
 <LAT_N>4.0000000e+001</LAT_N> 
 <LONG_W>1.0500000e+002</LONG_W> 
 <stats> 
  <stat> 
   <STATION_ID>44</STATION_ID> 
   <MONTH>1</MONTH> 
   <TEMP_F>2.7299999e+001</TEMP_F> 
   <RAIN_I>1.8000001e-001</RAIN_I> 
  </stat> 
  <stat> 
   <STATION_ID>44</STATION_ID> 
   <MONTH>7</MONTH> 
   <TEMP_F>7.4800003e+001</TEMP_F> 
   <RAIN_I>2.1099999e+000</RAIN_I> 
   <operators> 
    <operator> 
     <ID>51</ID> 
     <NAME>Paul</NAME> 
     <SURNAME>Smith</SURNAME> 
    </operator> 
    <operator> 
     <ID>52</ID> 
     <NAME>Michael</NAME> 
     <SURNAME>Williams</SURNAME> 
    </operator> 
    <operator> 
     <ID>50</ID> 
     <NAME>John "The Fox"</NAME> 
     <SURNAME>Brown</SURNAME> 
    </operator> 
   </operators> 
  </stat> 
 </stats> 
</station> 
<station> 
 <ID>66</ID> 
 <CITY>Caribou</CITY> 
 <STATE>ME</STATE> 
 <LAT_N>4.7000000e+001</LAT_N> 
 <LONG_W>6.8000000e+001</LONG_W> 
 <stats> 
  <stat> 
   <STATION_ID>66</STATION_ID> 
   <MONTH>1</MONTH> 
   <TEMP_F>6.6999998e+000</TEMP_F> 
   <RAIN_I>2.0999999e+000</RAIN_I> 
   <operators> 
    <operator> 
     <ID>51</ID> 
     <NAME>Paul</NAME> 
     <SURNAME>Smith</SURNAME> 
    </operator> 
   </operators> 
  </stat> 
  <stat> 
   <STATION_ID>66</STATION_ID> 
   <MONTH>7</MONTH> 
   <TEMP_F>6.5800003e+001</TEMP_F> 
   <RAIN_I>4.5200000e+000</RAIN_I> 
   <operators> 
    <operator> 
     <ID>51</ID> 
     <NAME>Paul</NAME> 
     <SURNAME>Smith</SURNAME> 
    </operator> 
   </operators> 
  </stat> 
 </stats> 
</station> 

3.如何生成JSON数据

1)创建辅助函数

CREATE FUNCTION [dbo].[qfn_XmlToJson](@XmlData xml) 
RETURNS nvarchar(max) 
AS 
BEGIN 
 declare @m nvarchar(max) 
 SELECT @m='['+Stuff 
 ( 
   (SELECT theline from 
  (SELECT ','+' {'+Stuff 
    ( 
       (SELECT ',"'+coalesce(b.c.value('local-name(.)', 'NVARCHAR(255)'),'')+'":'+ 
           case when b.c.value('count(*)','int')=0  
           then dbo.[qfn_JsonEscape](b.c.value('text()[1]','NVARCHAR(MAX)')) 
           else dbo.qfn_XmlToJson(b.c.query('*')) 
           end 
         from x.a.nodes('*') b(c)                                 
         for xml path(''),TYPE).value('(./text())[1]','NVARCHAR(MAX)') 
        ,1,1,'')+'}' 
     from @XmlData.nodes('/*') x(a) 
    ) JSON(theLine) 
    for xml path(''),TYPE).value('.','NVARCHAR(MAX)') 
   ,1,1,'')+']' 
  return @m 
END 

CREATE FUNCTION [dbo].[qfn_JsonEscape](@value nvarchar(max) ) 
returns nvarchar(max) 
as begin 
  
 if (@value is null) return 'null' 
 if (TRY_PARSE( @value as float) is not null) return @value 
 
 set @value=replace(@value,'\','\\') 
 set @value=replace(@value,'"','\"') 
 
 return '"'+@value+'"' 
end 

3)查询sql

select dbo.qfn_XmlToJson 
( 
 ( 
  select stations.ID,stations.CITY,stations.STATE,stations.LAT_N,stations.LONG_W , 
     (select stats.*,  
          (select OPERATORS.*  
          from  OPERATORS inner join reviews  
          on   OPERATORS.ID=reviews.OPERATOR_ID 
          where reviews.STATION_ID=STATS.STATION_ID  
          and  reviews.STAT_MONTH=STATS.MONTH  
          for xml path('operator'),type 
          ) operators 
      from STATS  
      where STATS.STATION_ID=stations.ID for xml path('stat'),type 
     ) stats  
   from stations for xml path('stations'),type 
  ) 
) 

结果:

[ {"ID":13,"CITY":"Phoenix","STATE":"AZ","LAT_N":3.3000000e+001,"LONG_W"
:1.1200000e+002,"stats":[ {"STATION_ID":13,"MONTH":1,"TEMP_F":5.7400002e+001,"
RAIN_I":3.1000000e-001,"operators":[ {"ID":50,"NAME":"John \"The Fox\"","SURNAME":"Brown"}]},
 {"STATION_ID":13,"MONTH":7,"TEMP_F":9.1699997e+001,"RAIN_I":5.1500001e+000,"operators":
[ {"ID":50,"NAME":"John \"The Fox\"","SURNAME":"Brown"}]}]}, {"ID":44,"CITY":"Denver",
"STATE":"CO","LAT_N":4.0000000e+001,"LONG_W":1.0500000e+002,"stats":[ {"STATION_ID":44,
"MONTH":1,"TEMP_F":2.7299999e+001,"RAIN_I":1.8000001e-001}, {"STATION_ID":44,"MONTH":7,
"TEMP_F":7.4800003e+001,"RAIN_I":2.1099999e+000,"operators":[ {"ID":51,"NAME":"Paul",
"SURNAME":"Smith"}, {"ID":52,"NAME":"Michael","SURNAME":"Williams"}, {"ID":50,"NAME"
:"John \"The Fox\"","SURNAME":"Brown"}]}]}, {"ID":66,"CITY":"Caribou","STATE":"ME","LAT_N":
4.7000000e+001,"LONG_W":6.8000000e+001,"stats":[ {"STATION_ID":66,"MONTH":1,"TEMP
_F":6.6999998e+000,"RAIN_I":2.0999999e+000,"operators":[ {"ID":51,"NAME":"Paul","
SURNAME":"Smith"}]}, {"STATION_ID":66,"MONTH":7,"TEMP_F":6.5800003e+001,"RAIN_I":
4.5200000e+000,"operators":[ {"ID":51,"NAME":"Paul","SURNAME":"Smith"}]}]}] 

总结:

JSON作为灵活的Web通信交换架构,如果把配置数据存放在数据库中,直接获取JSON,那配置就会非常简单了,也能够大量减轻应用服务器的压力!

感谢阅读,希望能帮助到大家,谢谢大家对本站的支持!

更多精彩内容其他人还在看

SQL Server评估期已过问题的解决方法

这篇文章主要为大家详细介绍了SQL Server评估期已过问题的解决方法,感兴趣的小伙伴们可以参考一下
收藏 0 赞 0 分享

sqlserver还原数据库的时候出现提示无法打开备份设备的解决方法(设备出现错误或设备脱)

今天在恢复数据库的时候,因为是异地部分还原,出现提示 无法打开备份设备 E:\自动备份\ufidau8xTmp\UFDATA.BAK 。设备出现错误或设备脱,这里分享一下解决方法,需要的朋友可以参考一下
收藏 0 赞 0 分享

SQL数据库存储过程示例解析

这篇文章主要针对SQL数据库存储过程示例进行解析,感兴趣的小伙伴们可以参考一下
收藏 0 赞 0 分享

SQL Server 2012 安全概述

这篇文章给你概括介绍了SQL Server 2012里的基本安全概念。你学到了一些常见的数据威胁,探寻了SQL Server背后的设计理念,学习了在整个系列文章看到的一些安全术语,算是一篇比较非公式化的开篇,希望能够勾引起大家对于sql安全的兴趣
收藏 0 赞 0 分享

探讨select in 在postgresql的效率问题

这篇文章主要介绍了探讨select in 在postgresql的效率问题 的相关资料,需要的朋友可以参考下
收藏 0 赞 0 分享

SQL Server 2012 身份验证(Authentication)

这篇SQL Server安全文章,我们学习了SQL Server里的多个验证选项。Windows集成身份验证是最安全的,但并不是都是可行的,微软多年来已经让SQL Server验证更加安全。
收藏 0 赞 0 分享

SQL性能优化之定位网络性能问题的方法(DEMO)

这篇文章主要介绍了SQL性能优化之定位网络性能问题的方法的相关资料,需要的朋友可以参考下
收藏 0 赞 0 分享

SQL Server 2016里的sys.dm_exec_input_buffer的问题

这篇文章主要介绍了SQL Server 2016里的sys.dm_exec_input_buffer的相关资料,需要的朋友可以参考下
收藏 0 赞 0 分享

SQL Server删除表及删除表中数据的方法

本文介绍SQL Server中如何删除表,如何删除表中的数据。在删除表数据时有delete和truncate两种方法,delete和truncate有什么区别呢
收藏 0 赞 0 分享

sqlserver 因为选定的用户拥有对象,所以无法除去该用户的解决方法

这篇文章主要介绍了sqlserver 因为选定的用户拥有对象,所以无法除去该用户,因为是附加数据库选择了与源服务器一样的用户导致
收藏 0 赞 0 分享
查看更多