缓冲区溢出解密二
所属分类:
网络安全 / 加密解密
阅读数:
115
收藏 0赞 0分享
而如果ESP被PUSH到堆栈,这是堆栈的表示:
|_parametre_I___| EBP 12
|_parametre II__| EBP 8
|_return adress_| EBP 4
|___saved_ESP___| EBP ESP
|_local var I __| EBP-4
|_local var II__| EBP-8
在上面的图中,变量I 和II是传递给函数的参数。在返回地址和保存ESP之后,var I和II是函数的局部变量。现在,如果我们总结所有我们所讲的,当调用一个函数的时候:
1.我们保存老的堆栈指针,PUSH它到堆栈 2.我们保存下一个指令的地址(返回地址),PUSH它到堆栈。3.我们开始执行程序指令。
当我们调用一个函数时,上面3步都做了。
让我们在一个生动的例子中看堆栈的操作。
a.c :
void f(int a, int b, int c)
{
char z[4];
}
void main()
{
f(1, 2, 3);
}
用-g标志编译这个从而能够调试:
[murat@victim murat]$ gcc -g a.c -o a
让我们看看这里发生了什么:
[murat@victim murat]$ gdb -q ./a
(gdb) disas main
Dump of assembler code for function main:
0x8048448 : pushl 雙
0x8048449 : movl %esp,雙
0x804844b : pushl $0x3
0x804844d : pushl $0x2
0x804844f : pushl $0x1
0x8048451 : call 0x8048440
0x8048456 : addl $0xc,%esp
0x8048459 : leave
0x804845a : ret
End of assembler dump.
(gdb)
以上可见,main()函数中第一个指令是:
0x8048448 : pushl 雙
它支持老的指针,并把它压入堆栈。接着,拷贝老的堆栈指针倒ebp寄存器:
0x8048449 : movl %esp,雙
因而,从那时起,在函数中,我们将用EBP引用函数的局部变量。这两个指令被称为”程序引入”。接着,我们反序PUSH函数f()的参数到堆栈中。
0x804844b : pushl $0x3
0x804844d : pushl $0x2
0x804844f : pushl $0x1
我们调用这个函数:
0x8048451 : call 0x8048440
如我们已经通过CALL调用解释的那样,我们PUSH指令addl $0xc,%esp的地址0x8048456到堆栈。函数RET调用后,我们加12或者十六进制中的0xc(因为我们推入3个参数到堆栈中,每一个分配了4个字节(整型))。
接着我们离开main()函数,并且返回:
0x8048459 : leave
0x804845a : ret
好,在函数f()内部发生了什么呢?
(gdb)
disas f
Dump of assembler code for function f:
0x8048440 : pushl 雙
0x8048441 : movl %esp,雙
0x8048443 : subl $0x4,%esp
0x8048446 : leave
0x8048447 : ret
End of assembler dump.
(gdb)
开始两个指令都是一样的。它们是程序引入。接着我们看a:
0x8048443 : subl $0x4,%esp
从ESP减去了4个字节。这是为局部变量z分配空间。记得我们定义它为char z[4]?它是一个4字节的字符数组。最后,在末尾,函数返回:
0x8048446 : leave
0x8048447 : ret
好,让我们看另外一个例子:
b.c :
void f(int a, int b, int c)
{
char foo1[6];
char foo2[9];
}
void main()
{
f(1,2,3);
}
编译并且启动gdb,解析f:
[murat@victim murat]$ gcc -g b.c -o b
[murat@victim murat]$ gdb -q ./b
(gdb) disas f
Dump of assembler code for function f:
0x8048440 : pushl 雙
0x8048441 : movl %esp,雙
0x8048443 : subl $0x14,%esp
0x8048446 : leave
0x8048447 : ret
End of assembler dump.
(gdb)
可以看出,从ESP中减去了0x14(20字节),尽管foo1和foo2的总长度只有9 6=15。这样的原因是,内存,还有堆栈,在4字节框架下编址。这意味着,你不能简单的PUSH 1字节数据到堆栈中。或者4字节或者为空。
f()北调用时,堆栈将象这样:
|_______$1_______| EBP 16
|_______$2_______| EBP 12
|_______$3_______| EBP 8
|_return address_| EBP 4
|___saved_ESP____| EBP ESP
|______foo1______| EBP-4
|______foo1______| EBP-8
|______foo2______| EBP-12
|______foo2______| EBP-16
|______foo2______| EBP-20
你可以相信,当我们对f001装载超过8个字节对和对foo2超过12个字节,我们将溢出他们的空间。如果你对foo1写入超过4个字节,你将重写被保护的EBP,而且……如果你写入超过4个字节,你将重写返回地址……而这不正是我们都想要的吗?这是内存溢出的基础……让我设法用一段简单的代码稍微阐明一下这种现象,假设我们有这样的代码:
c.c :
#include
void f(char *str)
{
char foo[16];
strcpy(foo, str);
}
void main()
{
char large_one[256];
memset(large_one, 'A', 255);
f(large_one);
}
[murat@victim murat]$ make c
cc -W -Wall -pedantic -g c.c -o c
[murat@victim murat]$ ./c
Segmentation fault (core dumped)
[murat@victim murat]$
我们在上面做的是简单的写255字节到一个只能容纳16字节的数组里。我们传递了一个256字节的大数组作为一个参数给f()函数。在函数内部,没有边界检测我们拷贝了整个large_one到foo,溢出了foo和其它数据。因此缓冲区被填写了,同样的strcpy()用A填写了内存的其它部分,包括返回地址。
这里是用gdb生成核文件代码的检查:
[murat@victim murat]$ gdb -q c core
Core was generated by `./c'.
Program terminated with signal 11, Segmentation fault.
find_solib: Can't read pathname for load map: Input/output error
#0 0x41414141 in ?? ()
(gdb)
可以看出,CPU在EIP中看到0x41414141(041是字母A的十六进制ASCII码),试图存储和执行此处的指令。然而,0x41414141不是我们的程序被允许存储的内存地址。最后操作系统发了一个SIGSEGV(Segmentation Violation)段侵犯信号给程序并且停止了任何进一步的操作。
我们调用f()时,堆栈看起来象这样:
|______*str______| EBP 8
|_return address_| EBP 4
|___saved_ESP____| EBP ESP
|______foo1______| EBP-4
|______foo1______| EBP-8
|______foo1______| EBP-12
|______foo1______| EBP-16
strcpy()从foo1的开头,EBP-16开始,拷贝large_one到foo,没有边界检查,用A填充了整个堆栈。
现在我们能够重写返回地址,如果我们放一些其它的内存段地址,我们能在那里执行指令码?答案是肯定的。假如我们放了一些 /bin/sh spawn出的指令在一些内存地址中,而我们把这个地址放到我们溢出的这个函数返回地址中,我们就能spawn出一个shell,而且很有可能,既然你已经对setuid二进制程序感兴趣了,我们将spawn出一个root shell。
WEBSHELL提升权限又一招(Mysql漏洞)
S-serv提权方式人人都会用了,搞得现在的主机都配置得非常安全,看来攻击手法的层出不穷也是造成中国网络安全进步的一大原因之一,还有其他的pcanywhere获取密码,替换服务,等等。但是现在也没这么好搞了,随着安全意识的提高,之前的方式估计不怎么管用,现在我给大家介
收藏 0赞 0分享
常见保护的攻击:序列号方式
(1)序列号保护机制
数学算法一项都是密码加密的核心,但在一般的软件加密中,它似乎并不太为人们关心,因为大多数时候软件加密本身实现的都是一种编程的技巧。但近几年来随着序列号加密程序的普及,数学算法在软件加密中的比重似乎是越来越大了。
收藏 0赞 0分享
谈谈软件的破解原理
从本章开始,我们来一步一步学习Crack软件(80%读者昏死过去,且不省人世...另有20%在寻找附近可以用来打人的东西)
不可不说一下学习破解的三个阶段:
初级,修改程序,用ultraedit等工具修改exe文件,称暴力破解,简称爆破
中级,追出软件的
收藏 0赞 0分享
用Dos命令进行加锁 防病毒格式化硬盘
越来越多的病毒程序进行对计算机数据的破坏,有些病毒更直接格式化硬盘分区。
其实,我们可以用小命令来阻止病毒程序对硬盘的格式化等破坏操作。
用“记事本”打开C盘根目录下的Autoexec文件,并在其中添加如下语句:
收藏 0赞 0分享
用Dos命令解开远程NT服务器用户密码
如知道一个NT帐户与密码,就可以用
net use \主机ipc$Content$nbsp;"密码" /user:"用户"
与远程主机建立连接,这是每一个黑客或是梦想成为又或是正在努力成为黑客的朋友都知道的方法,甚至连我
收藏 0赞 0分享
对某ASC加密网马的破解和利用
QQ群中,有人在叫卖网马。网友花钱获得一个共享给我,让我看看。于是有了下面的这篇文章。
1.网马初探
在浏览器中打开网马,这个网马的功能比较简单,主要用来上传功能更强的网马。比较有特色的是可以在目标网页的上传漏洞,自己修改修改配置。查看该网马
收藏 0赞 0分享
教你利用IAT hook实现windows通用密码后门
先不管是不是真的有,我们可以自己实现一个这样的后门。
先简单介绍一下windows登陆过程中的一些过程。
winlogon进程用gina.dll获取用户名和密码,通过LPC传给lsass进程。
然后lsass进程调用默认认证包msv1_0.dll来验证密码的对错
收藏 0赞 0分享
网页加密完全攻略
现在专业性的网站越来越多,许多网友们都在网上建立起了自己的小家。不过辛辛苦苦制作的网页被人拿去改头换面却是件非常痛心的事,所以大家都想保护自己独创的作品,为自己的网页上把锁,今天就让我带大家了解一下如何给我们的网页加上一把密码锁。
一、常用JavaScript
收藏 0赞 0分享
总结一些加密算法
有一些是之前学破解写注册机时写的,一些是我改写某些兄弟的代码来的,写的不好多多指教:
{=======================================================
学习破解,写注册机的一些函数集
收藏 0赞 0分享
UPX程序破解过程
入门级的破解,用ollydbg
我用UPX将NOTEPAD.EXE加壳,选择OllyDbg 1.09d来脱壳。首先加载被加壳的程序,
程序直接定位到01014110 $60 PUSHAD处,选择CTRL F 输入查找内容"POPAD",
OD
收藏 0赞 0分享
查看更多