基于堆的基本操作的介绍

所属分类: 软件编程 / C 语言 阅读数: 104
收藏 0 赞 0 分享

  我们期望的数据结构能支持插入操作,并能方便地从中取出具有最小或最大关键码的记录,这样的数据结构即为优先级队列。在优先级队列的各种实现中,堆是最高效的一种数据结构。
  最小堆:任一结点的关键码均小于或等于它的左右子女的关键码,位于堆顶的结点的关键码是整个元素集合的最小的,所以称它为最小堆。最大堆类似定义。

  创建堆:采用从下向上逐步调整形成堆得方法来创建堆。为下面的分支结点调用下调算法siftDown,将以它们为根的子树调整为最小堆。从局部到整体,将最小堆逐步扩大,直到将整个树调整为最小堆。

  插入一个元素:最小堆的插入算法调用了另一种堆得调整方法siftUp,实现自下而上的上滑调整。因为每次新结点总是插在已经建成的最小堆后面,这时必须遵守与sift相反的比较路径,从下向上,与父结点的关键码进行比较,对调。

  删除一个元素:从最小堆删除具有最小关键码记录的操作时将最小堆的堆顶元素,即其完全二叉树的顺序表示的第0号元素删去,去把这个元素取走后,一般以堆得最后一个结点填补取走的堆顶元素,并将堆的实际元素个数减1.但是用最后一个元素取代堆顶元素将破坏堆,需要调用siftDown算法进行调整堆。

本文代码均以最小堆的实现为例。

复制代码 代码如下:

#include<iostream>
#include<assert.h>
usingnamespace std;

constint maxheapsize=100;
staticint currentsize=0;

//从上到下调整堆
void siftDown(int* heap,int currentPos,int m)
{
    int i=currentPos;
    int j=currentPos*2+1;//i's leftChild
int temp=heap[i];
    while(j<=m)
    {
        if(j<m&&heap[j]>heap[j+1]) j++;// j points to minChild
if(temp<=heap[j]) break;
        else
        {
            heap[i]=heap[j];
            i=j;
            j=2*i+1;
        }
    }
    heap[i]=temp;
}

//从下向上调整堆
void siftUp(int* heap, int start)
{
    int i=start,j=(i-1)/2;
    int temp=heap[i];

    while(i>0)
    {
        if(heap[j]>temp)
        {
            heap[i]=heap[j];
            i=j;
            j=(i-1)/2;
        }
        elsebreak;
    }
    heap[i]=temp;
}

//构建堆
int* Heap(int*arr, int size)
{
    int i;
    currentsize=size;
    int* heap =newint[maxheapsize];
    assert(heap!=NULL);
    for(i=0;i<currentsize;i++) heap[i]=arr[i];
    int currentPos=(currentsize-2)/2;
    while(currentPos>=0)
    {
        siftDown(heap,currentPos,currentsize-1);
        currentPos--;
    }
    return heap;
}


//增加一个元素
void insert(int* heap,int value)
{
    if(currentsize>=maxheapsize)
    {
        cout<<"Heap is full!"<<endl;
        return ;
    }
    heap[currentsize]=value;
    siftUp(heap,currentsize);
    currentsize++;
}

//删除一个元素,并返回删除前的堆顶元素
int removemin(int* heap)
{
    assert(currentsize>=0);
    int removeValue=heap[0];
    heap[0]=heap[currentsize-1];
    currentsize--;
    siftDown(heap,0,currentsize-1);
    return removeValue;
}

int main()
{
    constint size=10;
    int arr[size]={2,1,3,0,8,1,6,9,7,10};
    int* heap=Heap(arr,size);
    //堆排序
for(int i=0;i<size;i++)
    {
        arr[i]=removemin(heap);
        cout<<arr[i]<<endl;
    }
    delete []heap;
    return0;

 
 

}

更多精彩内容其他人还在看

利用C语言来求最大连续子序列乘积的方法

这篇文章主要介绍了利用C语言来求最大连续子序列乘积的方法,基本的思路以外文中还附有相关ACM题目,需要的朋友可以参考下
收藏 0 赞 0 分享

用C语言判断一个二叉树是否为另一个的子结构

这篇文章主要介绍了用C语言判断一个二叉树是否为另一个的子结构,是数据结构学习当中的基础知识,需要的朋友可以参考下
收藏 0 赞 0 分享

C语言实现的阶乘,排列和组合实例

这篇文章主要介绍了C语言实现的阶乘,排列和组合的方法,涉及C语言数学运算的相关技巧,具有一定参考借鉴价值,需要的朋友可以参考下
收藏 0 赞 0 分享

C语言查找数组里数字重复次数的方法

这篇文章主要介绍了C语言查找数组里数字重复次数的方法,涉及C语言针对数组的遍历与判断技巧,具有一定参考借鉴价值,需要的朋友可以参考下
收藏 0 赞 0 分享

C语言简单实现计算字符个数的方法

这篇文章主要介绍了C语言简单实现计算字符个数的方法,涉及C语言针对字符串的简单遍历与判定技巧,具有一定参考借鉴价值,需要的朋友可以参考下
收藏 0 赞 0 分享

c实现linux下的数据库备份

本文给大家简单介绍下c实现linux下的数据库备份的方法和具体的源码,十分的实用,有需要的小伙伴可以参考下。
收藏 0 赞 0 分享

C++获得文件状态信息的方法

这篇文章主要介绍了C++获得文件状态信息的方法,包括文件状态信息、文件所在磁盘盘符、文件创建时间、访问时间及修改日期等,需要的朋友可以参考下
收藏 0 赞 0 分享

C语言按关键字搜索文件夹中文件的方法

这篇文章主要介绍了C语言按关键字搜索文件夹中文件的方法,涉及C语言文件操作及字符串查找的相关技巧,具有一定参考借鉴价值,需要的朋友可以参考下
收藏 0 赞 0 分享

C语言之字符串模糊查询方法的实现

本篇文章主要为大家介绍字符串模糊查询的C语言程序编写方法,有需要的朋友可以参考下
收藏 0 赞 0 分享

C语言实现BMP转换JPG的方法

这篇文章主要介绍了C语言实现BMP转换JPG的方法,涉及C#图片格式转换的相关技巧,具有一定参考借鉴价值,需要的朋友可以参考下
收藏 0 赞 0 分享
查看更多